

SAND REPORT

SAND2003-1470
Unlimited Release
Printed May 2003

ACME
Algorithms for Contact in a
Multiphysics Environment
API Version 1.3

Kevin H. Brown, Micheal W. Glass, Arne S. Gullerud,
Martin W. Heinstein, Reese E. Jones, and Thomas E. Voth

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume
any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represent that its use would
not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or
reflect those of the United States Government, any agency thereof, or any of their
contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/ordering.htm

 SAND2003-1470
Unlimited Release
Printed May 2003
ACME
Algorithms for Contact in a Multiphysics Environment

API Version 1.3

Kevin H. Brown and Thomas E. Voth
Computational Physics R&D Department

Micheal W. Glass
Thermal/Fluid Computational Engineering Sciences Department

Arne S. Gullerud and Martin W. Heinstein
Computational Solid Mechanics & Structural Mechanics Department

Reese E. Jones
Science-Based Materials Modeling Department

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM 87185-0819
Abstract

An effort is underway at Sandia National Laboratories to develop
to search for potential interactions between surfaces represente
cretized topological entities. This effort is also developing algorit
due to these interactions for transient dynamics applications. This
Application Programming Interface (API) for the ACME (Algo
Multiphysics Environment) library.
3

 a library of algorithms
d by analytic and dis-

hms to determine forces
 document describes the
rithms for Contact in a

4

Table of Contents

Table of Contents . 5
List of Figures . 9
List of Tables . 11

1. Introduction. 13
1.1 Topology . 14

1.1.1 Node_Blocks . 14
1.1.2 Face_Blocks . 15
1.1.3 Element_Blocks . 15
1.1.4 Analytic_Surfaces. 16
1.1.5 Search_Data . 16

1.2 Search Algorithms . 18
1.2.1 Static 1-Configuration Search Algorithm. 19
1.2.2 Static 2-Configuration Search Algorithm. 19
1.2.3 Dynamic 2-Configuration Search Algorithm . 19
1.2.4 Dynamic Augmented 2-Configuration Search Algorithm 20

1.3 Interactions . 20
1.3.1 NodeFace_Interactions . 20
1.3.2 NodeSurface_Interactions . 22
1.3.3 FaceFace_Interactions . 22
1.3.4 FaceCoverage_Interactions . 25
1.3.5 ElementElement_Interactions. 26

1.4 Search Options . 27
1.4.1 Multiple Interactions at a Node . 27
1.4.2 Normal Smoothing . 28

1.5 Gap Removal Enforcement. 30
1.6 Explicit Transient Dynamic Enforcement. 31
1.7 Tied Kinematics Enforcement . 32
1.8 Volume Transfer Enforcement . 32
1.9 Multiple Point Constraint (MPC) Enforcement . 32
1.10 Errors. 33
1.11 Plotting . 33

1.11.1 Search Data Plot Variables. 34
1.11.2 Enforcement Data Plot Variables . 38

1.12 Restart Capabilities . 39

2. Utility Functions . 41
2.1 Version Information . 41

2.1.1 Getting the Version ID . 41
2.1.2 Getting the Version Date . 42
2.1.3 Checking Compatibility with MPI . 42

2.2 Errors. 42
2.2.1 Getting the Number of Errors. 43
2.2.2 Extracting Error Messages . 43
5

2.3 Binary Stream Restart Functions . 44
2.3.1 Getting the Binary Restart Size . 44
2.3.2 Extracting the Binary Restart Data. 45
2.3.3 Constructing Objects Upon Restart . 46

2.4 Variable-Based Restart Functions . 47
2.4.1 Obtaining the Number of General Restart Variables 48
2.4.2 Obtaining the Number of Nodal Restart Variables 48
2.4.3 Obtaining the Number of Edge Restart Variables 49
2.4.4 Obtaining the Number of Face Restart Variables. 50
2.4.5 Obtaining the Number of Element Restart Variables. 50
2.4.6 Extracting the General Restart Variables . 51
2.4.7 Implanting the General Restart Variables . 52
2.4.8 Extracting the Nodal Restart Variables . 53
2.4.9 Implanting the Nodal Restart Variables . 54
2.4.10 Extracting the Edge Restart Variables . 56
2.4.11 Implanting the Edge Restart Variables. 57
2.4.12 Extracting the Face Restart Variables . 59
2.4.13 Implanting the Face Restart Variables . 60
2.4.14 Extracting the Element Restart Variables. 61
2.4.15 Implanting the Element Restart Variables . 63
2.4.16 Completing a Variable-Based Restart . 64

2.5 Creating an Exodus Plot File of the Search & Enforcement Data 65

3. Search Functions . 67
3.1 Creating a ContactSearch Object . 67
3.2 Updating a Search Object . 70
3.3 Search_Data Array . 74

3.3.1 Checking the Search_Data Array Size . 74
3.3.2 Setting Values in the Search_Data Array. 74

3.4 Analytic_Surfaces . 75
3.4.1 Adding an Analytic_Surface . 75
3.4.2 Setting the Analytic_Surface Configuration . 77

3.5 Node_Block Data . 77
3.5.1 Setting the Node_Block Configuration . 77
3.5.2 Setting the Node_Block Kinematic Constraints. 78
3.5.3 Setting the Node_Block Attributes. 79

3.6 Face_Block Data . 79
3.6.1 Setting the Face_Block Attributes . 79

3.7 Table Data . 80
3.8 Search Algorithms . 81

3.8.1 Setting the Search Option. 81
3.8.2 Performing a Static 1-Configuration Search . 81
3.8.3 Performing a Static 2-Configuration Search . 82
3.8.4 Performing a Dynamic 2-Configuration Search. 82
3.8.5 Performing a Dynamic Augmented 2-Configuration Search 82

3.9 Interactions . 83
6

3.9.1 Getting the Size of NodeFace_Interactions . 83
3.9.2 Extracting NodeFace_Interactions . 84
3.9.3 Getting the Size of NodeSurface_Interactions . 85
3.9.4 Extracting NodeSurface_Interactions. 85
3.9.5 Getting the Size of FaceFace_Interactions . 86
3.9.6 Extracting FaceFace_Interactions . 86
3.9.7 Getting the Size of FaceCoverage_Interactions 87
3.9.8 Extracting FaceCoverage_Interactions. 88
3.9.9 Getting the Size of ElementElement_Interactions 88
3.9.10 Extracting ElementElement_Interactions. 89
3.9.11 Deleting Interactions . 90

4. Gap Removal Enforcement Functions . 91
4.1 Constructing a ContactGapRemoval Object . 91
4.2 Computing the Gap Removal Displacements . 92
4.3 Destroying a ContactGapRemoval Object . 92

5. Explicit Transient Dynamic Enforcement Functions 93
5.1 Creating a ContactTDEnforcement Object . 93
5.2 Defining Enforcement Models . 94
5.3 Controlling the Algorithm. 97
5.4 Specifying Symmetric Nodes . 97
5.5 Computing the Contact Forces . 98
5.6 Extracting Plot Variables. 99
5.7 Destroying a ContactTDEnforcement Object . 100

6. Tied Kinematics Enforcement Functions . 101
6.1 Constructing a ContactTiedKinematics Object. 101
6.2 Computing the ContactTiedKinematic Displacements. 102
6.3 Destroying a ContactTiedKinematics Object . 102

7. Volume Transfer . 103
7.1 Constructing a Volume TransferObject. 103
7.2 Computing the Transfered Element and Nodal Data . 104
7.3 Destroying a ContactVolumeTransfer Object . 105

8. MPC Enforcement . 107
8.1 Constructing a ContactMPCs Object . 107
8.2 Computing the Multiple Point Constraint (MPC) Equations 108
8.3 Getting the Number of MPC Equations . 108
8.4 Getting the MPC Equations . 109
8.5 Destroying a ContactVolumeTransfer Object . 110

9. Example . 111
9.1 Problem Description . 111
9.2 Constructing a ContactSearch Object . 113
9.3 Adding an Analytic_Surface. 114
9.4 Search Data . 114
9.5 Setting the Search Options . 115
7

9.6 Specifying Configurations . 116
9.7 Performing the Search. 117
9.8 Extracting Interactions . 118
9.9 ExodusII Output . 119

Appendix A: Glossary of ACME Terms . 121
8

List of Figures

Figure 1. Idealized 2D face with Search_Normal_Tolerance18

Figure 2. Idealized 2D face with Search_Tangential_Tolerance...............................19

Figure 3. 3D NodeFace_Interactions ..21

Figure 4. 3D NodeSurface_Interaction Data...22

Figure 5. 3D FaceFace_Interactions..24

Figure 6. 2D example of using PROJECTION_DIRECTION attribute to obtain user
defined mortarising.25

Figure 7. Post-processing of FaceFace_Interactions to produce
FaceCoverage_Interactions.26

Figure 8. Definition of Angle Between Faces...27

Figure 9. Interactions for Single vs. Multiple Interaction Definition........................28

Figure 10. Normal Smoothing Across an Edge...28

Figure 11. Region of Normal Smoothing for a QuadFaceL4......................................29

Figure 12. Illustration of Normal Smoothing Resolution ...30

Figure 13. Analytic Cylindrical Surfaces ..76

Figure 14. Example impact problem (two rectangular bodies and an
Analytic_Surface)111

Figure 15. Face_Block Numbering for Example Problem..111

Figure 16. Surface Topology for Example Problem..112

Figure 17. ExodusII Output for Example Problem ...120
9

10

List of Tables

Table 1. NodeFace_Interaction Data for 3D...21

Table 2. NodeSurface_Interaction Data for 3D ..22

Table 3. FaceFace_Interaction Data for 3D..23

Table 4. FaceCoverage_Interaction Data for 3D ..25

Table 5. ElementElement_Interaction Data for 3D ..27

Table 6. Search Data Global Variables for ExodusII Output..34

Table 7. Search Data Nodal Variables for ExodusII Output ...35

Table 8. Search Data Element Variables for ExodusII Output36

Table 9. Enforcement Data Nodal Variables for ExodusII Output38

Table 10. Search Data Element Variables for ExodusII Output39

Table 11. C++ Data Description for Analytic_Surfaces...76

Table 12. Transient Dynamic Enforcement Models and Data..95

Table 13. TD Plot Variables..99

Table 14. Face_Blocks for Example Problem ..112

Table 15. Current and Predicted Positions for Example Problem117

Table 16. NodeFace_Interactions for Example Problem..118

Table 17. NodeSurface_Interactions for Example Problem ...119
11

12

Introduction
1. Introduction

Contact algorithms play an important role in many research and production codes that
simulate various interfacial aspects of continuum solid and fluid mechanics and energy
transport. Because of the difficult nature of contact in general and in order to concentrate
and leverage development efforts, an effort is underway at Sandia National Laboratories
to develop a library of algorithms to search for potential interactions between surfaces rep-
resented by finite element meshes and other topological entities. The requirements for
such a library, along with other pertinent information, are documented at the following
World Wide Web site:

http://www.jal.sandia.gov/SEACAS/AcmeWeb/html/index.html

This document describes the Application Programming Interface (API) for the ACME
search and transient dynamics enforcement library. (In an attempt to avoid confusion, cap-
italized terms are used in this document to refer to specific terminology for which detailed
definitions are provided. A glossary of these terms is given in Appendix A.) This introduc-
tory section gives an overview of the concepts and design of the ACME interface and out-
lines the building blocks that make up the data ACME needs from the host code and the
data it returns to the host code. Section 2 describes various utility functions used to extract
information about the package and its operation. Section 3 describes functions needed to
access and utilize the search capabilities of ACME. Section 4 describes functions that can
remove an initial overlap for a mesh prior to beginning a transient. Section 5 describes
functions which ACME provides to enforce the results of the search in explicit transient
dynamics simulations. Section 6 describes functions for a tied kinematic enforcement ca-
pability that allows nodes to be tied to faces and satisfy a no-relative-motion requirement.
Section 7 describes functions that perform volume-weighted node and element variable
transfers based on the element volume overlap returned by the search object. Section 8 de-
scribes functions which ACME provides to build multiple point constraint (MPC) equa-
tions which the host code may use to enforce node-face interactions returned by the
search. Finally, Section 9 provides an example of how to use the API within a C++ appli-
cation.

The basic philosophy of the ACME interface is to provide a separate function to support
each activity. Efforts have been made to have the C++, C, and Fortran interfaces appear as
similar as possible. It is important to note that all array indexes use the Fortran convention
(i.e., indexes start with 1) and all floating-point data are double precision.

This release of the ACME library contains only a subset of the algorithms and functional-
ity required to meet all the needs of the application codes. Currently, ACME supports
three-dimensional (3D) topologies in serial and in parallel processing modes. No multi-
state support is provided in this release (i.e., ACME has no ability to revert to previous
states). ACME only supports conventional nodes (smooth particle hydrodynamics nodes
are not yet supported) and a limited set of face types (a linear 4-node quadrilateral, a qua-
dratic 8-node quadrilateral, a linear 3-node triangle, and a quadratic 6-node triangle) in
this release. This release provides a preliminary implementation of shell contact which in-
13

Introduction
volves the lofting of shell surfaces. Shell contact in this version of ACME is subject to the
following restrictions: at most two shells can share a single edge, shells can not be in-
volved with element birth/death or dynamic load balancing, and restarts with shells is only
supported through the variable restart interface. This release also only supports element-
element searches using 8-node hex elements, and at least one of the elements in the search
be a Cartesian hex. Additional algorithms and functionality will be added in subsequent
releases.

1.1 Topology

The topology for ACME is determined by the host code. The first step in using the library
is for the host code to provide to ACME a topological description of the surfaces to be
checked for interactions, or the elements to be checked for overlap. Currently, the topolo-
gy consists of collections of nodes, faces, elements, and analytic surfaces. Nodes, faces,
and elements are supplied to ACME in groups called blocks. A Node_Block may contain
only one type of node. A Face_Block may contain only one type of face and all faces will
have the same Entity_Key. (Entity_Keys are used to extract user-specified parameters
from the Search_Data array for pairs of interacting topological entities, as explained in
Section 1.1.5). An Element_Block may contain only one type of element, and all elements
will have the same Entity_Key. Currently, a single search object should not contain both
Face_Blocks and Element_Blocks. Providing the full functionality required of ACME will
necessitate adding Edge_Blocks, which will be analogous to Face_Blocks (see the de-
scription in Section 1.1.2). Also, the full functionality required of ACME will necessitate
adding multiple states; for this initial release of ACME, only a single state (with one or
two configurations) is supported.

1.1.1 Node_Blocks

A Node_Block is a collection of nodes of the same type. Currently, the only type of node
supported in ACME is a conventional node that has a position attribute and an optional
projection direction attribute (for face/face search; see Section 1.3.3). Eventually three
types of nodes will be supported:

NODE: A traditional node with position and an optional projection direction attribute.
NODE_WITH_SLOPE: A higher-order shell node that has a first derivative as an attribute and an

optional projection direction attribute.
NODE_WITH_RADIUS: A node that has a radius as an attribute and an optional projection direc-

tion attribute. This radius is associated with the size of a spherical domain, as with smooth
particle hydrodynamics (SPH) particles.

In this release only NODE Node_Blocks are supported. All of the nodes that are connect-
ed to faces must be in the first Node_Block. Other Node_Blocks can be used for nodes not
connected to faces in the ContactSearch topology. These additional Node_Blocks can be
used for SPH particles (neglecting the radius of the particle) or for finding the Gauss point
locations on the other side of an interface. Since all nodes connected to faces must be in
Node_Block 1, the nodal communication lists refer only to nodes in Node_Block 1.
14

Introduction
Each Node_Block is assigned an integer identifier (ID). This ID corresponds to the order
in which the blocks were specified, using the Fortran numbering convention (i.e., the first
block has an ID of 1, the second block has an ID of 2, etc.). This ID is used in specifying
configurations for Node_Blocks, and for returning NodeFace_Interactions and
NodeSurface_Interactions, discussed later in Section 1.3.

1.1.2 Face_Blocks

A Face_Block is a collection of faces of the same type that have the same Entity_Key.
(Entity_Keys are used to extract user-specified parameters from the Search_Data array, as
explained in Section 1.1.5.) Currently, ACME supports a linear 4-node quadrilateral face
called QUADFACEL4, a quadratic 8-node quadrilateral face called QUADFACEQ8, a
linear 3-node triangular face called TRIFACEL3, and a quadratic 6-node triangular face
called TRIFACEQ6. It also supports shell versions of the linear 4-node quadrilateral and
3-node triangular faces, called SHELLQUADFACEL4 and SHELLTRIFACEL3, respec-
tively. Other face types will be added as needed. These are provided in an enumeration in
the ContactSearch header file:

enum ContactFace_Type {
QUADFACEL4 = 1,
QUADFACEQ8,
TRIFACEL3,
TRIFACEQ6,
SHELLQUADFACEL4,
SHELLTRIFACEL3

}

Each Face_Block is assigned an ID. This ID corresponds to the order in which the blocks
were specified. This ID is used in returning NodeFace_Interactions.

Specifying shell versions of the faces (SHELLQUADFACEL4 and SHELLTRIFACEL3)
indicate to the ACME library that a lofted geometry is to be created for the faces in the
corresponding blocks. Both the top and bottom faces of each shell must be included in the
face blocks passed to ACME, though the two faces are not required to be in the same
block. Note that ACME currently requires that shells share their edges with at most one
other shell.

ACME does not currently support the mixing of face blocks and element blocks in a single
search object.

1.1.3 Element_Blocks

An Element_Block is a collection of elements of the same type that have the same
Entity_Key. (Entity_Keys are used to extract user-specified parameters from the
Search_Data array, as explained in Section 1.1.5.) Currently, two forms of an eight-node
hex are supported: CARTESIANHEXELEMENTL8, which has each face aligned with a
Cartesian plane, and HEXELEMENTL8, which is an arbitrary eight-node hex. Other ele-
15

Introduction
ment types will be added as needed. These are provided in an enumeration in the Contact-
Search header file:

enum ContactElement_Type {
CARTESIANHEXELEMENTL8 = 1,
HEXELEMENTL8 }

Each Element_Block is assigned an ID. This ID corresponds to the order in which the
blocks were specified, using the Fortran numbering convention. This ID is used in return-
ing ElementElement_Interactions.

ACME does not currently support the mixing of face blocks and element blocks in a single
search object. Also, ACME currently requires that at least one of the element blocks in-
volved with every element-element search be a Cartesian hex. Element-element searches
between two HEXELEMENTL8 Element_Blocks is not permitted.

1.1.4 Analytic_Surfaces

In many instances, it is advantageous to search for interactions against rigid analytic sur-
faces (referred to as Analytic_Surfaces throughout this document) rather than mesh such a
surface. Examples include a tire rolling on a flat road or dropping a shipping container on
a post. Currently, ACME is designed to handle only geometric Analytic_Surfaces (e.g.,
planes, cylinders, etc.), and for now, only planar, spherical and cylindrical
Analytic_Surfaces are supported. Other geometric Analytic_Surfaces will be added in the
future as needed. Eventually, Analytic_Surfaces defined by Non-Uniform Rational B-
Splines (NURBS) will be supported. The ACME API will need to be extended to support
Analytic_Surfaces defined by NURBS. Analytic_Surfaces currently can interact only with
nodes, not faces or elements. Analytic_Surfaces should not be specified for search objects
that only contain elements.

Analytic_Surfaces, if any, are provided by the host code to ACME after the Node_Blocks
and Face_Blocks have been specified. Analytic_Surfaces are given an ID that corresponds
to the total number of Face_Blocks plus the order in which the Analytic_Surface was add-
ed (e.g., if three Face_Blocks exist in the topology, the ID of the first Analytic_Surface is
4, the ID of the second Analytic_Surface is 5, etc.). This ID is used in returning
NodeSurface_Interactions.

1.1.5 Search_Data

The Search_Data array contains data that describe how the various topological entities are
allowed to interact. The host code may specify, for example, that only nodes on surface A
interact with faces on surface B, or that only nodes on surface B interact with faces on sur-
face A, or both. The Search_Data array is the only place where such user-specified data
are kept.

Currently the Search_Data array holds only three parameters for each Entity_Key pair.
The first parameter is a status flag indicating what type of interactions should be defined
16

Introduction
for this pair. Eight values are currently permitted, provided in an enumeration in the Con-
tactSearch header file:

enum Search_Interaction_Type{
NO_INTERACTION = 0,
SLIDING_INTERACTION,
TIED_INTERACTION,
FACE_FACE_INTERACTION,
FACE_COVERACE_INTERACTION,
NFI_AND_FFI,
NFI_AND_FCI,
ELEMENT_ELEMENT_INTERACTION};

NO_INTERACTION (a value of 0) requests that no interactions be defined for this pair of
entities. SLIDING_INTERACTION (a value of 1) requests that ACME search for new
node/face or node/surface interactions between entities each time a search is executed.
TIED_INTERACTION (a value of 2) requests that a node/face or node/surface interaction
between entities persist over multiple time steps, thus allowing it to be used for mesh ty-
ing. FACE_FACE_INTERACTION (a value of 3) requests that ACME search for new
face/face interactions between entities each time a search is executed.
FACE_COVERAGE_INTERACTION (a value of 4) requests that ACME search for new
face/coverage interactions between entities each time a search is executed. In addition, it
requires that a face/face search also be performed. NFI_AND_FFI (a value of 5) requests
that ACME search for new node/face or node/surface interactions and face/face interac-
tions between entities each time a search is executed. NFI_AND_FCI (a value of 6) re-
quests that ACME search for new node/face or node/surface interactions and face/
coverage interactions between entities each time a search is executed. In addition, it re-
quires that a face/face search also be performed.
ELEMENT_ELEMENT_INTERACTION (a value of 7) requests that ACME search for
overlap between the elements of the two element blocks.

The second parameter in the Search_Data array is the Search_Normal_Tolerance, which is
used to determine whether the entity pair should interact, based on the separation between
the entities (see Figure 1). Note that the Search_Normal_Tolerance is an absolute dis-
tance, so it is dependent on the units of the problem. The third parameter is the
Search_Tangential_Tolerance, also used to determine whether the entity pair should inter-
act, but taking into account distances tangential to a face, rather than normal to it.
Element -Element interactions do not use either tolerance, so they should be set to zero.

Every face, element, and node is assigned an Entity_Key to allow retrieval of data from
the Search_Data array. For faces, the Entity_Key corresponds to the Face_Block ID. For
elements, the Entity_Key corresponds to the Element_Block ID. Currently, a node inherits
its Entity_Key from the first face that contains it. This is a limitation of the current imple-
mentation, since a node can be connected to two or more faces that are in different
Face_Blocks.

The Search_Data array is a three-dimensional Fortran array with the following size
17

Introduction
dimension search_data(3,num_entity_keys,num_entity_keys)

The first index represents one of the three parameters described previously for each entity
pair, currently a node-face, node-Analytic_Surface, face-face, or element-element pair.
The second index indicates the Entity_Key for the node, face, or element in an interaction,
and the third index indicates the Entity_Key for the face, element, or Analytic_Surface in
an interaction.

1.2 Search Algorithms

ACME provides four different algorithms for determining interactions. The data types re-
turned in the interactions are the same for each type of search. The host code may use dif-
ferent types of search algorithms during an analysis (e.g., a static 1-configuration search to
determine overlaps in the mesh before starting the analysis and then a dynamic search
once time stepping begins in a transient dynamics code).

As an aid to understanding the differences between the search algorithms, consider the
idealized 2D face of Figure 1. In this idealized example, the subtleties of what happens at
the edge of a face are ignored. Any entity that is outside the face, where “outside” is de-
fined by the outward unit normal n, is not penetrating and has a positive Gap. Any entity
that is on the face (i.e., a zero Gap) or inside the face (i.e., a negative Gap) is considered to
be penetrating. The host code controls the Search_Normal_Tolerance as part of the
Search_Data array (see Section 1.1.5). The Motion_Tolerance accounts for movement of
the node if two configurations are used, and is computed by ACME.

Figure 1 Idealized 2D face with Search_Normal_Tolerance

A separate tolerance, Search_Tangential_Tolerance, is used to specify the behavior of the
search algorithms along the edge of a face. As shown in Figure 2, a NodeFace_Interaction
will be defined for any node that is outside the face tangentially but within the
Search_Tangential_Tolerance. The host code controls the Search_Tangential_Tolerance
as part of the Search_Data array (see Section 1.1.4).

Search_Normal_Tolerance

Motion_Tolerance

Search_Normal_Tolerance

n Face

Not Penetrating

Search_Normal_Tolerance

Penetrating

Search_Normal_Tolerance

Penetrating
within Motion_Tolerance

(positive Gap) within

(zero or negative Gap) within
18

Introduction
Figure 2 Idealized 2D face with Search_Tangential_Tolerance

1.2.1 Static 1-Configuration Search Algorithm

The static 1-configuration search algorithm uses only one configuration for the topology.
The interactions are determined using only a closest point projection algorithm. Interac-
tions are defined only for entities that are within the Search_Normal_Tolerance (either
negative or positive Gap) and the Search_Tangential_Tolerance. The Motion_Tolerance is
implied to be zero. This search must be used for face-face and element-element interac-
tions.

1.2.2 Static 2-Configuration Search Algorithm

The static 2-configuration search algorithm requires two configurations (Current and Pre-
dicted) for the topology. This search algorithm uses closest point projection on the predict-
ed configuration but it has the added information of the movement of the topology. The
motion tolerance implied by the two configurations is used along with the Search_Data to
determine what interactions are physically realistic. Specifically, any node that has a posi-
tive Gap within the Search_Normal_Tolerance or any node that has a negative Gap within
the Search_Normal_Tolerance plus the motion tolerance will result in an interaction being
defined, provided that the node’s projection falls within the face boundary as extended lat-
erally by the Search_Tangential_Tolerance. This search is not supported for face-face or
element-element searches; only the static 1-configuration search will operate for these
cases.

1.2.3 Dynamic 2-Configuration Search Algorithm

The dynamic 2-configuration search algorithm also requires two configurations (Current
and Predicted) for the topology. A dynamic intersection algorithm based on linear interpo-
lation of the motion is used to initiate interaction if the current and predicted Gaps are on
opposing sides of the face (e.g., the current configuration has a positive Gap and the pre-
dicted configuration has a negative Gap). A closest point projection algorithm is used for
subsequent interaction definition and to initiate interaction if the current and predicted
Gaps are on the same side of the face. In these cases, interactions are defined by the same

Face

Search_Tangential_Tolerance

Face Extension for
Search_Tangential_Tolerance
Node interacting with Face

Node interacting with Face
within Search_Tangential_Tolerance

Node not interacting with Face
19

Introduction
criteria as in the static 2-configuration search algorithm (see Figure 1). This search is not
supported for face-face or element-element searches; only the static 1-configuration
search will operate for these cases.

1.2.4 Dynamic Augmented 2-Configuration Search Algorithm

The dynamic augmented 2-configuration search algorithm is a more accurate implementa-
tion of the dynamic 2-configuration search algorithm. This search can only be used in con-
junction with the ContactTDEnforcement enforcement algorithm. It uses information
from the enforcement on the previous step to compute an augmented configuration that
yields more accurate interactions. This search is not supported for face-face or element-el-
ement searches; only the static 1-configuration search will operate for these cases.

1.3 Interactions

The output of ACME following a search is a collection of interactions based on the topol-
ogy, configuration(s), Search_Data, and search algorithm. Currently, five types of interac-
tions are supported: NodeFace_Interactions, NodeSurface_Interactions,
FaceFace_Interactions, FaceCoverage_Interactions, and ElementElement_Interactions.
ACME does not determine the best interaction between these types (i.e., ACME does not
compete a NodeFace_Interaction against a NodeSurface_Interaction when the same node
is involved; both are returned to the host code). Other interaction types (e.g.,
EdgeFace_Interaction) will be added in the future. The FaceFace_Interactions,
FaceCoverage_Interactions, and ElementElement_Interactions are only available in the
static 1-configuration search.

1.3.1 NodeFace_Interactions

A NodeFace_Interaction is returned as a set of data to the host code: a node (indicated by
the Node_Block ID and the index in that Node_Block), a face (indicated by the
Face_Block ID and the index in that Face_Block) and data describing the interaction.
Consider the examples shown in Figure 3. The first diagram illustrates an interaction de-
fined using the dynamic intersection algorithm. Here, a node, lightly shaded in its current
configuration and black in its predicted configuration, intersects a TRIFACEL3 at X in an
intermediate configuration denoted with white nodes. The motion of the node is represent-
ed by the vector vs. Also shown are the data that are returned for this interaction. Specifi-
cally, the pushback direction is given by the vector from the penetrating node’s predicted
position to the position of the contact point convected into the predicted configuration. In
the second diagram, the contact point X, determined by closest point projection for a sin-
gle configuration, is shown in local coordinate space for a QUADFACEL4. Table 1 gives
the Fortran layout of how the data are returned. It should be noted that only two local co-
ordinates are returned. For triangular faces, the third local coordinate is simply unity mi-
nus the sum of the other two local coordinates.

Currently, ACME can not return NodeFace_Interactions for shell faces
(SHELLQUADFACEL4 and SHELLTRIFACEL3).
20

Introduction
Figure 3 3D NodeFace_Interactions

Table 1 NodeFace_Interaction Data for 3D

Location
(Fortran Indexing) Quantity

1 Local Coordinate 1 (ξ1 for Q4 or Q8, ξ1 for T3 or T6)

2 Local Coordinate 2 (η1 for Q4 or Q8, ξ2 for T3 or T6)

3 Gap

4-6 Unit Pushback Vector (x, y & z components)

7-9 Unit Surface Normal (x, y & z components)

10 Algorithm Used to Define Interaction
{1=Closest Point Projection (1 Configuration),
 2=Closest Point Projection (2 Configuration),
 3=Dynamic Intersection (2 Configuration)}

ξ1
A1

AT
------=

A1

A2

ξ2
A2

AT
------=

ξ3
A3

AT
------=

vs

Local Coordinates:

Unit Pushback Vector:
Unit Surface Normal:
Algorithm: Dynamic Intersection

n̂

n̂
p̂

g p̂⋅

(not returned)
Gap: g

xx

(of contact point X)

1

3

2

(-1,-1)

(1, 1)

ξ

η

1 2

34

X
(ξ1,η1)

Local Coordinates:
(of contact point X)

ξ1 ξ1=

ξ2 η1=

Algorithm: Closest Point Projection

Gap: g (not shown)
Unit Pushback Vector:
Unit Surface Normal:

(not shown)
(not shown)

p̂
n̂

(1-Configuration)
21

Introduction
1.3.2 NodeSurface_Interactions

A NodeSurface_Interaction is returned as a set of data to the host code: a node (indicated
by the Node_Block ID and the index in that Node_Block), an Analytic_Surface (indicated
by its ID) and the data describing the interaction. Figure 4 shows the interaction data that
are returned to the host code for each interaction. Table 2 gives the layout of the data for a
NodeSurface_Interaction.

For this release of ACME, NodeSurface_Interactions are determined using a closest point
projection algorithm. Therefore, only one configuration is required for the
Analytic_Surfaces. The configuration used for the nodes is based on the current configura-
tion for a 1-configuration static search and the predicted configuration for the 2-configura-
tion static search or the dynamic searches. This limitation will be removed in a future
release.

Figure 4 3D NodeSurface_Interaction Data

1.3.3 FaceFace_Interactions

A FaceFace_Interaction is returned as a set of data to the host code: a slave face (indicated
by the Face_Block ID and the index in that Face_Block), a master face (indicated by the
Face_Block ID and the index in that Face_Block), and data describing the interaction.

Table 2 NodeSurface_Interaction Data for 3D

Location
(Fortran Indexing) Quantity

1-3 Interaction Point (x, y & z coordinates)

4 Gap

5-7 Unit Surface Normal (x, y & z components)

x
g

Unit Surface Normal:

Interaction Point: x
Gap: g

n̂

n̂

22

Introduction
This interaction is only valid for faces of type QUADFACEL4 and TRIFACEL3. Consid-
er the example shown in Figure 5. Here, two faces are in proximity and the
FaceFace_Interaction needs to be determined. The master face is transformed into a mas-
ter volume by projecting the nodes in the +/- projection direction by the
Search_Normal_Tolerance. By default, the projection direction for each node on the mas-
ter face is the normal at that node (with or without smoothing). Optionally, the projection
direction can be user-specified as a node attribute. This permits “mortarising” to be per-
formed under user control (see Figure 6). Once the master face has been converted to a
master volume, the intersection between the slave face and master volume is computed.
This intersection is described with a closed polygon having N sides, En, and nodes, Pn.
The points on the slave face that define the polygon are stored in the local coordinates of
the slave face. These points are also computed as local coordinates of the master volume
and projected onto the master face by setting ξ3 = 0 and then stored in the local coordi-
nates of the master face. The resulting convex polygon can be triangularized by the host
by calculating the centroid of the polygon, PN+1, and connecting it to each node. Two ad-
ditional arrays (of length N) are defined that indicate with which edge, if any, of the mas-
ter or slave face an edge of the polygon is coincident. Table 3 gives the Fortran layout of
how the data are returned. It should be noted that only two local coordinates are returned.
For triangular faces, the third local coordinate is simply unity minus the sum of the other
two local coordinates.

Table 3 FaceFace_Interaction Data for 3D

Location
(Fortran Indexing) Quantity

1 number of vertices (and edges), N

1+n slave edge flag for edge n=1,...,N

(N+1)+n master edge flag for edge n=1,...,N

(2*N+1)+4*(n-1)+1 Local Coordinate 1 on slave face for polygon node Xn,
n=1,...,N

(2*N+1)+4*(n-1)+2 Local Coordinate 2 on slave face for polygon node Xn,
n=1,...,N

(2*N+1)+4*(n-1)+3 Local Coordinate 1 on master face for polygon node Xn,
n=1,...,N

(2*N+1)+4*(n-1)+4 Local Coordinate 2 on master face for polygon node Xn,
n=1,...,N
23

Introduction
Number of edges = 4

Master edge flag array = [0, 0, 0, 0]

Slave edge flag array = [0, 0, 3, 4]

Polygon nodes = P1, P2, P3, and P4

Polygon centroid = P5

Figure 5 3D FaceFace_Interactions

master face

slave face
1

2

3

4
1

2

3
4

P1

P4

P3

P2

P5

E1

E4

E3

E2
24

Introduction
1.3.4 FaceCoverage_Interactions

A FaceCoverage_Interaction is returned as a set of data to the host code: a face (indicated
by the Face_Block ID and the index in that Face_Block) and data describing the interac-
tion. Each FaceCoverage_Interaction is a closed polygon that describes an exposed (i.e.,
uncovered) portion of a face. The FaceCoverage_Interaction is computed by post-process-
ing the FaceFace_Interactions for each face. A directed edge graph is constructed using
the edges of the polygon from all the FaceFace_Interactions associated with each face and
any portions of each face edge that are not part of a FaceFace_Interaction polygon. Closed
polygons are then extracted from the directed edge graph to produce one or more
FaceCoverage_Interactions for each face, as shown in Figure 7. Table 4 gives the Fortran
layout of how the data are returned. For triangular faces, the third local coordinate is sim-
ply unity minus the sum of the other two local coordinates.

Table 4 FaceCoverage_Interaction Data for 3D

Location
(Fortran Indexing) Quantity

1 Number of vertices (and edges), N

2*(n-1)+2 Local Coordinate 1 for polygon node Pn, n=1,...,N

2*(n-1)+3 Local Coordinate 2 for polygon node Pn, n=1,...,N

Figure 6 2D example of using PROJECTION_DIRECTION
attribute to obtain user defined mortarising.

(a) with node normal
projection direction

(b) with user defined
projection direction
25

Introduction
1.3.5 ElementElement_Interactions

An ElementElement_Interaction is returned as a set of data to the host code: a slave ele-
ment (indicated by the Element_Block ID and the index in that Element_Block), a master
element (indicated by the Element_Block ID and the index in that Element_Block), and
data describing the interaction. This interaction is only valid for elements of type
CARTEISIANHEXELEMENTL8 and HEXELEMENTL8. Furthermore, at least one of
the elements in every interaction must be a CARTEISIANHEXELEMENTL8. Table 5
gives the Fortran layout of how the data are returned. Currently, the only information re-
turned for these interactions is the volume of the overlap.

FaceFace_Interaction Polygon

FaceCoverage_Interaction Polygon Edge

FCI1

FCI1

FCI2

(a) One FaceCoverage_Interaction
produced from post-processing
the FaceFace_Interactions.

(b) Two FaceCoverage_Interactions
produced from post-processing
the FaceFace_Interactions.

Figure 7 Post-processing of FaceFace_Interactions to produce
FaceCoverage_Interactions.
26

Introduction
1.4 Search Options

1.4.1 Multiple Interactions at a Node

By default, ACME defines only one interaction at a node. If potential interactions with
more than one face are detected, ACME will return only one interaction (the best one, ac-
cording to the algorithm used for competition between two interactions) to the host code.
However, to get better behavior at a true corner of a body, multiple interactions with the
faces surrounding the corner should be considered. Therefore, if desired, ACME can de-
fine multiple interactions at a node. When this feature is activated, the host code must
specify an angle (in degrees) called SHARP_NON_SHARP_ANGLE. If the angle be-
tween connected faces (computed as the angle between the normals to the faces, as shown
in Figure 8) is greater than SHARP_NON_SHARP_ANGLE, then an interaction will be
defined for each face, instead of competition between the two to define one interaction. If
the multiple interactions feature is not active, interactions with only one of two discon-
nected faces will be returned (see Figure 9). Interactions with disconnected faces will be
returned to the host code regardless of the angle.

Figure 8 Definition of Angle Between Faces

Table 5 ElementElement_Interaction Data for 3D

Location
(Fortran Indexing) Quantity

1 Volume of overlap between elements

θ θ is the angle between faces

n2n1
27

Introduction
Figure 9 Interactions for Single vs. Multiple Interaction Definition

1.4.2 Normal Smoothing

As previously noted, a NodeFace_Interaction consists of a contact point, a normal gap, a
pushback direction, and a normal direction. The normal direction is an approximation of
the normal to the surface at the contact point, which by default is simply the normal to the
face. In some cases, however, it is necessary to have a continually varying normal without
abrupt changes (e.g., when transitioning across an edge). The normal smoothing capability
computes, if appropriate, a “smoothed” normal that varies continuously as a node transi-
tions between faces. Smoothing occurs if the contact point is within a user-specified dis-
tance to the edge and if the included angle between the faces is less than the
SHARP_NON_SHARP_ANGLE (see Figure 10). The contact point, normal gap, and
pushback direction are not modified by normal smoothing.

Figure 10 Normal Smoothing Across an Edge

When activating this feature, the host code must specify a
SHARP_NON_SHARP_ANGLE (in degrees), a normal smoothing distance, and a
RESOLUTION_METHOD for cases when a unique solution cannot be determined. If the
angle between two faces is greater than the SHARP_NON_SHARP_ANGLE, then the
edge is considered SHARP and no smoothing will be done to the normal. The angle spec-
ified for normal smoothing must match the angle specified for multiple interactions if that
capability is active.

The normal smoothing distance (SD) specifies the region over which normal smoothing
occurs (see Figure 11). This distance is in isoparametric coordinates, so its value ranges
from 0 to 1 (in theory), but for practical purposes, 0.5 is an upper bound.

Configuration Interactions with
Multiple Interactions

Interactions for
Single Interaction

n2

n1
n1

n2

Normal Smoothing Area

Face
28

Introduction
Figure 11 Region of Normal Smoothing for a QuadFaceL4

For the case when a unique solution does not exist for a smoothed normal, two resolution
methods are provided: USE_NODE_NORMAL and USE_EDGE_BASED_NORMAL.
To illustrate the differences between these two approaches, consider Figure 12. This ex-
ample consists of five faces in the configuration shown, and uses a
SHARP_NON_SHARP_ANGLE of 30 degrees. The angles between faces 1 and 5 and be-
tween faces 3 and 4 are greater than the SHARP_NON_SHARP_ANGLE, so the smooth-
ing algorithm should not smooth between these faces. Smoothing is done between faces 1
and 2 and between faces 2 and 3, because the corresponding angles are less than 30 de-
grees. For points approaching the shared intersection of faces 1, 2, and 3, however, the two
options ACME provides for determining the smoothed normal deliver different results.
The USE_NODE_NORMAL option defines the normal at the intersection point to be the
node normal and thus provides a continuously smooth normal in the region near the point.
The problem with this approach in this particular case is that the node normal also in-
cludes the effects of faces 4 and 5, and thus effectively provides smoothing over the
boundary between faces 1 and 5. Alternatively, the USE_EDGE_BASED_NORMAL op-
tion only considers smoothing between a pair of faces. This approach ensures that no
smoothing occurs between faces 1 and 5, but it unfortunately can provide a different nor-
mal if we approach the intersection point from face 1 than if we approach the point from
face 3. Therefore, the smoothed normal at the intersection point can be discontinuous,
which can cause numerical problems in some applications. This feature will be addressed
further as host codes gain experience on what approaches provide the best behavior.

(1,1)

(1-SD,1-SD)

(. , .) Isoparametric Coordinates

η

ξ Area with normal smoothing

Area without normal smoothing
29

Introduction
Figure 12 Illustration of Normal Smoothing Resolution

1.5 Gap Removal Enforcement

An optional gap removal enforcement is also included in ACME. Initial gaps often occur
in meshes where curved geometries are discretized using varying mesh densities. The dis-
cretization error causes nodes from one (or more) surfaces to penetrate other surfaces.
This initial gap can cause problems in explicit transient dynamic simulations (as well as
other physics simulations) if the initial gap is large enough to cause interactions to be
missed or if the initial gap is enforced on the first step, causing a large force. An effective
method for avoiding these problems is to search for initial gaps and remove them in a
strain-free manner (i.e., the initial topology is modified to remove the initial gaps). The
enforcement object will compute the displacement correction needed to remove these ini-
tial gaps. Although it is not possible to have all nodes exactly on the faces of the other sur-
face for curved geometries (it is an overconstrained problem), the gap removal
enforcement seeks to satisfy the inequality that all gaps are non-negative with a minimum
normal gap.

The gap removal enforcement should be used after performing a static 1-configuration
search. The typical sequence for an explicit transient dynamic simulation would be:

1) Set the Search_Data array appropriate for an initial gap search.
2) Perform a static 1-configuration search.
3) Call ContactGapRemoval::Compute_Gap_Removal.
4) Apply the displacement correction from step 3 to the topology.
5) Initialization (compute volume, mass, etc. using the modified topology).

Currently, ACME does not support the use of Gap Removal on meshes that include shell
faces (SHELLQUADFACEL4 and SHELLTRIFACEL3).

Face 1

Face 2
Face 3

Face 4

Face 5

Non-Sharp Edge

Sharp Edge

Contact Point
30

Introduction
1.6 Explicit Transient Dynamic Enforcement

An optional explicit transient dynamic enforcement capability is included in ACME. The
algorithm was written assuming that the host code is integrating the equations of motion
using a central difference time integrator. The topology, interactions, and configurations
are taken directly from a ContactSearch object (i.e., the enforcement is dependent on a
ContactSearch object). This capability takes as input the nodal masses from the host and
returns the nodal forces that need to be applied.

The explicit transient dynamic enforcement can only be used in conjunction with the dy-
namic 2-configuration or dynamic augmented 2-configuration search methods. Following
gap removal (if desired) and initialization, the continuation of the typical sequence for an
explicit transient dynamic simulation would be:

6) Set the Search_Data array appropriate for the analysis.
7) Time Step using

a) a dynamic or dynamic augmented 2-configuration search.
b) a ContactTDEnforcement enforcement.

Two parameters, KINEMATIC_PARTITION and FRICTION_MODEL_ID, must be sup-
plied by the host code for each possible entity pair. The KINEMATIC_PARTITION per-
tains to the fraction of total momentum each contacting surface will absorb. For example,
if surface 1 contacts surface 2 and the kinematic partition for surface 1 is k, then the kine-
matic partition for surface 2 with respect to surface 1 is 1-k. Furthermore, if k is 1, then
surface 1 acts as a “slave” to surface 2. The kinematic partition can either be a constant
user-specified value (between 0 and 1) or the code will compute it for each interaction us-
ing the relations

(1)

(2)

where is the kinematic partition, ρi is the density, and ci is the wavespeed of the materi-
al for surface i, (i=1,2).

The FRICTION_MODEL_ID refers to the particular friction model requested by the host
code. There are currently nine friction models available: frictionless, constant Coulomb
friction, tied, pressure dependent friction, velocity dependent friction, adhesion, spot
weld, point weld, and cohesive zone. For NodeFace_Interactions and
NodeSurface_Interactions, tied, frictionless, and frictional conditions can be enforced at a
node. If these constraints are independent (e.g., three separate contact constraints at the
corner of a block), the enforcement delivers the expected result. For conflicting con-

β1
ρ1c1

ρ1c1 ρ2c2+
------------------------------=

β2
ρ2c2

ρ1c1 ρ2c2+
------------------------------=

βi
31

Introduction
straints, a least-squares methodology is employed to resolve the forces required to effect
the simultaneous interacting contact conditions.

1.7 Tied Kinematics Enforcement

ACME provides an optional enforcement capability to compute the positions of nodes so
that no relative motion occurs between a master face and a slave node. This enforcement
only operates for a pure master-slave relationship (i.e., it does not work for symmetric cas-
es). This enforcement was developed to serve as a remesh boundary condition for
ALEGRA’s SHISM capability but may have additional uses. It should be paired with a
static 1_configuration search, which only needs to be done once. The enforcement can
then be called repeatedly to reposition the slave nodes using the interactions defined by
the search, with the slave node position interpolated using the local coordinates and the
positions of the nodes on the face.

1.8 Volume Transfer Enforcement

An optional volume transfer enforcement capability is included in ACME. This enforce-
ment provides facilities to transfer nodal and element data between two meshes. This data
transfer is performed using linear interpolation between the master (donor) to slave (re-
ceiver) mesh for nodal variables. Element variables data is mapped between the two mesh-
es using volume fraction weighting. A call to the volume transfer routine (see Section 7.2)
provides both the transfered nodal and element variables along with the volume fraction
on the receiving mesh filled by the donor mesh. This enforcement object requires that at
least one of the meshes (either donor, receiver or both) consist of cartesian HEX8 ele-
ments.

1.9 Multiple Point Constraint (MPC) Enforcement

An optional multiple point constraint (MPC) equation capability is included in ACME.
This enforcement provides facilities to build MPC equations for pure master-slave en-
forcement of node-on-face interactions. The topology, interactions, and configurations are
taken directly from a ContactSearch object (i.e., the enforcement is dependent on a Con-
tactSearch object). The MPC algorithm should be paired with a static 1-configuration
search, which only needs to be called once. Subsequent calls to the appropriate Contact-
MPC functions (see Section 8.) build the constraint equations, get the number of equations
and return the MPC data to the host code.

Calls to get the MPC equations return a list of the equations in terms of slave node ID, the
ID of the master face and the IDs of the nodes attached to the face and their corresponding
coefficients (cf. Section 8.). The scheme used for numbering the node and face IDs is user
selectable being either the global ID supplied by the user when the search object was con-
structed or ACME’s internal ID (cf. Section 8.). In parallel operation ACME’s MPC en-
forcement will return to the calling processor all MPC equations for which the processor
owns the face, the slave node, or has a ghost copy of the slave node. For this reason dupli-
cate constraint equations may be returned when (in parallel) the calling processor owns
the face and has a ghost of the slave node.
32

Introduction
1.10 Errors

ACME will trap internal errors whenever possible and return gracefully to the host code.
ACME will never try to recover from an error; it will simply return control to the host
code. The host code, therefore, has the final decision of how to proceed. At the moment an
internal error is detected, ACME will immediately return to the host code without attempt-
ing to finish processing or attempting to ensure its internal data are consistent. As a result,
it is essential that the host code check for errors. Interactions may not be reasonable if an
internal error was encountered.

Errors are reported in two ways. First, all public access functions that could encounter an
error return a ContactErrorCode (an enumeration in the ContactSearch header file). This
error return code will be globally synchronized (i.e., all processors will return the same
value).

The current enumeration for error codes is:

enum ContactErrorCode{
NO_ERROR = 0,
ID_NOT_FOUND,
UNKNOWN_TYPE,
INVALID_ID,
INVALID_DATA,
UNIMPLEMENTED_FUNCTION,
ZOLTAN_ERROR,
EXODUS_ERROR,
INVALID_INTERACTION,
INTERNAL_ERROR };

The return value is meant as an easy check for the host code to determine if an error oc-
curred on any processor. It does not specify which processor encountered the error, nor
does it return a real description of the error or the ID (if appropriate) to determine on what
entity the error occurred (e.g., which unimplemented function was called or, possibly in
the future, which face has a negative area). ACME does not normally write any data to the
standard output or error files (stdout or stderr). Instead, ACME provides functions to ex-
tract detailed error information line by line, which the host code can then direct to its own
output files as desired. Each line is limited to 80 characters.

1.11 Plotting

ACME can be built with a compile-time option to include an ExodusII plotting capability.
The host code is responsible for creating the ExodusII file, including the name and loca-
tion of the plot file. It is also responsible for closing the file after ACME writes its data.
Because ACME writes double precision data, this file must be created with the ExodusII
parameter ICOMPWS set to 8.

If the host code desires a plot file from ACME, it must create a new file for each time step.
This capability is primarily intended as a debugging tool and is not envisioned for use in
production calculations. Since the host code specifies the mesh topology and has access to
33

Introduction
the interactions, it has the ability to include the interaction data in its normal plotting func-
tionality as it sees fit.

The mesh coordinates for each plot file are always taken as those in the current configura-
tion. The displacements are the differences between the predicted and current coordinates
if the predicted coordinates have been specified; otherwise the displacements are set to ze-
ro. Each Face_Block is treated as an element block (TRI3 for TRIFACEL3, TRI6 for
TRIFACEQ6, and SHELL for QUADFACEL4 and QUADFACEQ8), as are
Element_Blocks. Additional element blocks, one for each edge type, are created to repre-
sent the edges (BAR for LineEdgeL2 and BAR3 for LineEdgeQ3). An additional TRI3 el-
ement block is created to represent the FaceFace_Interactions. An additional BAR
element block is created to represent the FaceCoverage_Interactions. Because ExodusII
does not support node blocks, all the nodes are output without their associated
Node_Block. Shell faces are plotted in their lofted configuration.

1.11.1 Search Data Plot Variables

Plot output data consists of search and enforcement object variables. Global, nodal and el-
ement search data are presented in this section. The search data global output variables are
listed in Table 6.

Table 6 Search Data Global Variables for ExodusII Output

Name Description

num_nf_interactions total number of NodeFace_Interactions

num_ns_interactions total number of NodeSurface_Interactions

num_ff_interactions total number of FaceFace_Interactions

num_fc_interactions total number of FaceCoverage_Interactions

num_ee_interactions total number of ElementElement_Interactions

mult_interaction_status flag indicating if multiple interactions is on/off

norm_smoothing_status flag indicating if normal smoothing is on/off

smoothing_angle SHARP_NON_SHARP_ANGLE for normal smoothing
and multiple interactions

smoothing_length SD for normal smoothing

smoothing_resolution RESOLUTION_METHOD for normal smoothing
34

Introduction

d

n

n

c

f

a

n

g

g

p

i

n

The search data nodal output variables include both the nodal data (displacement and node
normal) and the interactions (NodeFace_Interactions and NodeSurface_Interactions). The
interactions are output for their associated node, rather than with the face. Currently, up to
three interactions at a node can be output, with no meaning attached to their order. If a
node has no interactions, all of the interaction data for that node will be zero. If a node has
one interaction, the second and third sets of interaction data will all be zero, etc. Table 7
gives a description of all the nodal data written to the ExodusII file. (UNIX-style wildcard
notation is used in this and subsequent tables. For example, displ[xyz] is shorthand for dis-
plx, disply, and displz.)

Table 7 Search Data Nodal Variables for ExodusII Output

Name Description

ispl[xyz] X, Y & Z components of displacement

norm[xyz] X, Y & Z components of the unit node normal

umcon Number of kinematic constraints at the node

onvec[xyz] X, Y & Z components of kinematic constraint vector (provided by host)

ace_id[123] The ID of the face involved in interaction 1, 2, or 3 (0 if no interaction)

lg[123] Algorithm used to define interaction 1, 2, or 3
(1=closest point projection for 1-configuration search,
2=closest point projection for 2-configuration search,
3=moving_intersection)

ode_ek[123] The node entity key for interaction 1, 2, or 3 (0 if no interaction)

apcur[123] The Gap arising from the current time step, not including any residual
Gap

apold[123] The residual Gap from the previous time step for interaction 1, 2, or 3

bdir[123][xyz] X, Y, & Z components of the pushback direction for interaction 1, 2, or 3

vec[123][xyz] X, Y, & Z components of a vector that, when drawn from the node, gives
the location of the interaction point for interaction 1, 2, or 3

orm[123][xyz] X, Y, & Z components of the normal to the surface at the interaction
point for interaction 1, 2, or 3
35

Introduction

p

i

G

P

P

S

N

The “element” data actually consist of the element, face, and edge data (since they are out-
put as element blocks). The FaceFace_Interaction, FaceCoverage_Interaction, and
ElementElement_Interaction data are also stored as element data. Table 8 gives the names
and descriptions of the element data written to the ExodusII file.

fnorm[123][xyz] X, Y, & Z components of the physical face normal for the node for inter-
action 1, 2, or 3. (The physical face concept is used to obtain face to face
contact without the full expense. A node on a flat surface will have only
one physical face, while a node at the corner of a cube would have three
physical faces (one for each of the three intersecting planes)

veca[xyz] X, Y, & Z components of a vector that, when drawn from the node, gives
the location of the interaction point with an Analytic_Surface. This item
is included only for problems with Analytic_Surfaces.

lobal_ID The global ID for the node supplied by the host code in the constructor

rimary_Owner The processor that owns the node in the primary decomposition

rimary_Local_ID The local ID for the node on the owning processor

econdary_Owner The processor that owns the node in the secondary decomposition

odEnf[xyz] X, Y, & Z components of a vector that is the force for ContactTDEn-
forcement and the displacement correction for ContactGapRemoval.

Table 8 Search Data Element Variables for ExodusII Output

Name Entity Description

fnorm[xyz] Faces Unit face normal at centroid

curvature Edges 0 = Unknown
1 = Convex
2 = Concave
3 = Concave with smoothing
4 = Convex with smoothing

angle_bf Edges The angle between the two faces connected to this
edge. The value is zero if the edge is connected to only
one face.

FFI[0-N]_FACE_ID Faces The ID of the master face involved in interaction 0, 1,
..., N=num_ffi_interactions-1

Table 7 Search Data Nodal Variables for ExodusII Output

Name Description
36

Introduction
FFI[0-N]_NVERTS Faces The number of vertexes/edges in the polygon for inter-
action 0, 1, ..., N=num_ffi_interactions-1

FFI[0-N]_SX[0-M] Faces The 1st local coordinate on the slave face for interac-
tion 0, 1, ..., N=num_ffi_interactions-1 and vertex 0, 1,
..., M=nverts-1

FFI[0-N]_SY[0-M] Faces The 2nd local coordinate on the slave face for interac-
tion 0, 1, ..., N=num_ffi_interactions-1 and vertex 0, 1,
..., M=nverts-1

FFI[0-N]_MX[0-M] Faces The 1st local coordinate on the master face for interac-
tion 0, 1, ..., N=num_ffi_interactions-1 and vertex 0, 1,
..., M=nverts-1

FFI[0-N]_MY[0-M] Faces The 2nd local coordinate on the master face for inter-
action 0, 1, ..., N=num_ffi_interactions-1 and vertex 0,
1, ..., M=nverts-1

FFI[0-N]_EDGE[0-M] Faces The flag indicating coincidence with an edge on the
slave face for interaction 0, 1, ...,
N=num_ffi_interactions-1 and vertex 0, 1, ...,
M=nverts-1

FFI[0-N]_FLAG[0-M] Faces The flag indicating coincidence with an edge on the
master face for interaction 0, 1, ...,
N=num_ffi_interactions-1 and vertex 0, 1, ...,
M=nverts-1

FCI[0-N]_NVERTS Faces The number of vertexes/edges in the polygon for inter-
action 0, 1, ..., N=num_fci_interactions-1

FCI[0-N]_X[0-M] Faces The 1st local coordinate on the face for interaction 0,
1, ..., N=num_fci_interactions-1 and vertex 0, 1, ...,
M=nverts-1

FCI[0-N]_Y[0-M] Faces The 2nd local coordinate on the face for interaction 0,
1, ..., N=num_fci_interactions-1 and vertex 0, 1, ...,
M=nverts-1

PrimaryOwner All The processor that owns the entity in the primary
decomposition

PrimaryLocalID All The local ID for the entity on the owning processor

SecondaryOwner All The processor that owns the entity in the secondary
decomposition

Volume Elems The volume of the element

Table 8 Search Data Element Variables for ExodusII Output

Name Entity Description
37

Introduction
1.11.2 Enforcement Data Plot Variables

The enforcement objects which provide ExodusII plot data include Gap Removal, Explicit
Transient Dynamics, Tied Kinematics and Contact Volume Transfer. Depending on the
enforcement, they provide nodal and element plot data. None of the enforcement objects
provides global data. Nodal data for the Gap Removal, Explicit Transient Dynamics, Tied
Kinematics and Contact Volume Transfer are presented in Table 9. Element data is pro-
vided only for the Contact Volume Transfer enforcement and these are presented in Table
10. As in the search, UNIX-style wildcard notation is used in this and subsequent tables.

NumVolVolOverlaps Elems The maximum number of volume-volume overlaps
detected for an element, V

EEI[0-V]_ELEM_ID Elems The ID of an overlapping element (0 if none)

EEI[0-V]_VOLUME Elems The volume of the overlap between this element and
the overlapping element (0 if none)

ElmEnf[1-5] Elems Element enforcement variables for volume overlap
enforcement

Table 9 Enforcement Data Nodal Variables for ExodusII Output

Name Enforcement Description

Enfvar[xyz] Gap Removal Displacement increment needed to remove gap.

ENFVAR[xyz] Explicit
Transient
Dynamics

Total contact force at the node.

ELMENF[1-N] Contact Vol-
ume Transfer

The mapped element variable on the receiver
mesh and its originial value on the donor mesh
where N element variables where supplied for
transfer.

ELMENF[N+1] Contact Vol-
ume Transfer

Volume fraction of receiver element filled with
donor elements. Donor element values are set to
zero.

Table 8 Search Data Element Variables for ExodusII Output

Name Entity Description
38

Introduction
1.12 Restart Capabilities

ACME currently provides two options for restart. The first restart option is a binary data
stream, where all of the data are packed into one array to be written to a restart file. This
binary data stream can then be used with a special constructor to restore the objects to
their original state. The second restart option allows a host code to extract node, edge and
face restart variables one at a time to be output to a restart file. The variable-based restart
requires the host code to call the basic constructor for the objects and then “implant” the
restart variables into the object, which restores the objects to their states before the restart.
Both restart methods currently require that neither the mesh topology nor the decomposi-
tion change. Eventually, the ability to restart with a different number of processors will be
supported with the variable-based restart capability; it will not be supported with the bina-
ry stream restart function.

Currently, ACME only supports restart for meshes with shell faces
(SHELLQUADFACEL4 and SHELLTRIFACEL3) using the variable-based restart capa-
bility.

Table 10 Search Data Element Variables for ExodusII Output

Name Enforcement Description

Enfvar[xyz] Gap Removal Displacement increment needed to remove gap.

ENFVAR[xyz] Explicit
Transient
Dynamics

Total contact force at the node.

ENFVAR[xyz] Tied Kine-
matics

Final location of the node after moved to satisfy
tied constraint.

NODENF[1-N] Contact Vol-
ume Transfer

The mapped nodal variable on the receiver mesh
and the originial nodal variable on the donor
mesh where N nodal variables where supplied
for transfer.
39

Introduction
40

Utility Functions
2. Utility Functions

ACME provides various utility functions that are either independent of the search and en-
forcement objects or are identical for those objects. These include functions to obtain in-
formation about the current version of ACME, to extract information about errors
encountered within the ACME algorithms, to extract data needed to restart ACME pro-
cessing, and to create ExodusII plot files.

In each section delineating the ACME API functions (Sections 2, 3, 4, 5, and 6), the differ-
ent forms for the C++, C, and Fortran syntax are presented together for each function call.
The C++ API uses the full object-oriented capabilities of the language. On the other hand,
the C and Fortran APIs, which in actuality have been combined into a single interface, are
a collection of functions that have a pure C interface and can be called from either C or
Fortran routines. The FORTRAN macro that surrounds all calls in the C syntax converts
the function by appending an underscore to the end of the function name, if appropriate.
Because of this, all data in the C API must be passed by address, not by value. For Fortran,
there exists no capability to pass data by value, so simply specifying the name of the vari-
able or array will allow it to be passed appropriately.

The Search_Interface.h and Enforcement_Interface.h header files, located in the ACME
search and enforcement directories respectively, include the prototypes for the C and For-
tran functions described in this chapter. The ContactSearch.h and ContactEnforcement.h
files include the requisite C++ prototypes. Enumerations for symbolic types used in the
C++ API are also found in ContactSearch.h; these indicate the acceptable integral values
that may be used in the C and Fortran APIs.

2.1 Version Information

Functions are provided to obtain the ACME version number and its release date and to
check the compile-time compatibility of the ACME library and the host code with respect
to the MPI library.

2.1.1 Getting the Version ID

The following function returns the version of ACME, which is a character string of the
form x.yz, where x is an integer representing the major version, y is an integer represent-
ing the minor version, and z is a letter representing the bug fix level. The initial release of
this version of ACME will be 1.3a, the first bug fix release will be 1.3b, and so on. The
prototype for this function is:

C++ const char* ACME_Version();

C void FORTRAN(acme_version)(char* vers);

Fortran acme_version(vers)

where
41

Utility Functions
vers is an array of characters of length 80 (in C, 81 including the terminal ‘\n’).

2.1.2 Getting the Version Date

The following function returns the release date for ACME, which is a character string of
the form ‘December 24, 2002’ (the current release date). The prototype for this function
is:

C++ const char* ACME_VersionDate();

C void FORTRAN(acme_versiondate)(char* vers_date);

Fortran acme_versiondate(vers_date)

where

vers_date is an array of characters of length 80 (in C, 81 including the terminal ‘\n’).

2.1.3 Checking Compatibility with MPI

The following function returns an error if the compilations of the host code and the ACME
library are incompatible with respect to the MPI library. The host code should call this
function with the host_compile argument set to MPI_COMPILE, which is defined in the
ContactSearch header file to be 0 if CONTACT_NO_MPI is defined at compile time, and
defined as 1 otherwise. This function will check for compatibility with the value of
MPI_COMPILE defined during compilation of the ACME library. The prototype for this
function is:

C++ int ACME_MPI_Compatibility(int host_compile);

C void FORTRAN(acme_mpi_compatibility)
(int* host_compile, int* error);

Fortran acme_mpi_compatibility(host_compile, error)

where

host_compile is the value of MPI_COMPILE used during compilation of the host code.
error is the return error code for the C and Fortran APIs.

2.2 Errors

As discussed in Section 1.10, ACME attempts to trap internal errors whenever possible.
There are C-style character strings that can be extracted to give a detailed description of
what error(s) occurred during ACME processing for the search and enforcement objects.
These strings are specific to the current processor. Therefore, each processor may have a
different number of error messages. The error return code is synchronized in parallel so all
processors return the same error code even if a processor did not encounter an error.
42

Utility Functions
2.2.1 Getting the Number of Errors

The following functions, which are public member functions in the C++ API, determine
how many error messages the current processor has written. The prototypes for these func-
tions are:

C++ int ContactSearch::Number_of_Errors();
int ContactTDEnforcement::Number_of_Errors();
int ContactGapRemoval::Number_of_Errors();
int ContactTiedKinematics::Number_of_Errors();
int ContactVolumeTransfer::Number_of_Errors();

C FORTRAN(number_of_search_errors)(int* num_errors);
FORTRAN(number_of_td_errors)(int* num_errors);
FORTRAN(number_of_gap_errors)(int* num_errors);
FORTRAN(number_of_tied_errors)(int* num_errors);
FORTRAN(number_of_voltrans_errors)(int* num_errors);

Fortran number_of_search_errors(num_errors)
number_of_td_errors(num_errors)
number_of_gap_errors(num_errors)
number_of_tied_errors(num_errors)
number_of_voltrans_errors(num_errors)

where

num_errors is the number of error messages that should be extracted by the host code.

2.2.2 Extracting Error Messages

The following functions, which are public member functions in the C++ API, can be used
to extract the character strings for each error message on a processor (the number of which
can be determined by the functions described in the previous section):

C++ const char* ContactSearch::Error_Message(int i);
const char* ContactTDEnforcement::Error_Message(int i);
const char* ContactGapRemoval::Error_Message(int i);
const char* ContactTiedKinematics::Error_Message(int i);
const char* ContactVolumeTransfer::Error_Message(int i);

C FORTRAN(get_search_error_message)(
int* i,
char* message);

FORTRAN(get_td_error_message)(
int* i,
char* message);

FORTRAN(get_gap_error_message)(
int* i,
char* message);

FORTRAN(get_tied_kin_error_message)(
int* i,
char* message);
43

Utility Functions
FORTRAN(get_vol_tran_error_message)(
int* i,
char* message);

Fortran get_search_error_message(i, message)
get_td_error_message(i, message)
get_gap_error_message(i, message)
get_tied_kin_error_message(i, message)
get_vol_tran_error_message(i, message)

where

i is the Fortran index of the error message (i.e., 1 to Number_of_Errors(), or num_errors for C and
Fortran).

message is an array of characters of length 80 (in C, 81 including the terminal ‘\n’).

2.3 Binary Stream Restart Functions

ACME provides functionality to allow restart using a single binary stream of data for each
ACME search or enforcement object. The host code is responsible for allocating the array
to hold the data, calling the functions, and writing the data to a restart file. Upon restart,
the host code should supply the binary data stream to the special constructors described in
this section, which will restore the objects to their state before restart.

Currently, ACME does not support restarting analyses which contain shell faces
(SHELLQUADFACEL4 and SHELLTRIFACEL3) using the binary stream restart capa-
bility. Restart with shells is supported through the variable-based restart functions.

2.3.1 Getting the Binary Restart Size

The following functions allow the host code to determine how much memory to allocate
to store restart information for the search and enforcement objects. The return value is the
number of double locations that are needed.

C++ int ContactSearch::Restart_Size();
int ContactTDEnforcement::Restart_Size();
int ContactGapRemoval::Restart_Size();
int ContactTiedKinematics::Restart_Size();
int ContactVolumeTransfer::Restart_Size();

C FORTRAN(search_restart_size)(int* size);
FORTRAN(td_enf_restart_size)(int* size);
FORTRAN(gap_removal_restart_size)(int* size);
FORTRAN(tied_kin_restart_size)(int* size);
FORTRAN(vol_tran_restart_size)(int* size);

Fortran search_restart_size(size)
td_enf_restart_size(size)
gap_removal_restart_size(size)
tied_kin_restart_size(size)
44

Utility Functions
vol_tran_restart_size(size)

where

size is the number of double locations that are needed for the restart data.

2.3.2 Extracting the Binary Restart Data

The following functions allow the host code to extract all the information needed to ini-
tialize an ACME object to its current state.

C++ ContactErrorCode
ContactSearch::Extract_Restart_Data(

double* restart_data);
ContactErrorCode
ContactTDEnforcement::Extract_Restart_Data(

double* restart_data);
ContactErrorCode
ContactGapRemoval::Extract_Restart_Data(

double* restart_data);
ContactErrorCode
ContactTiedKinematics::Extract_Restart_Data(

double* restart_data);
ContactErrorCode
ContactVolumeTransfer::Extract_Restart_Data(

double* restart_data);

C FORTRAN(search_extract_restart)(
double* restart_data,
int* error);

FORTRAN(td_enf_extract_restart)(
double* restart_data,
int* error);

FORTRAN(gap_removal_extract_restart)(
double* restart_data,
int* error);

FORTRAN(tied_kin_extract_restart(
double* restart_data,
int* error);

FORTRAN(vol_tran_extract_restart(
double* restart_data,
int error);

Fortran search_extract_restart(restart_data, error)
td_enf_extract_restart(restart_data, error)
gap_removal_extract_restart(restart_data, error)
tied_kin_extract_restart(restart_data, error)
vol_tran_extract_restart(restart_data, error)

where
45

Utility Functions
restart_data is an array of type double. The length of this array is obtained from the function
Restart_Size() (see the previous section).

error is the return error code for the C and Fortran APIs.

2.3.3 Constructing Objects Upon Restart

Note, ACME does not enforce the requirement that host code global ids be identical across
a restart. This allows the host code to renumber nodes and faces when performing a restart
(due to adaptivity or element birth/death) but also requires that the host code supply the
host code global id numbering to ACME when performing a restart. As noted above, a
second constructor is available to allow for restarts from the binary data stream provided
by the Extract_Restart_Data functions described in Section 2.3.2:

C++ ContactSearch::ContactSearch(
const double* restart_data,
const int* node_global_ids,
const int* face_global_ids,
const MPI_Comm& mpi_communicator,
ContactErrorCode& error);

ContactTDEnforcement::ContactTDEnforcement(
ContactSearch* search,
double* restart_data,
int* error);

ContactGapRemoval::ContactGapRemoval(
ContactSearch* search,
double* restart_data,
int* error);

ContactTiedKinematics::ContactTiedKinematics(
ContactSearch* search,
double* restart_data,
int* error);

ContactVolumeTransfer::ContactVolumeTransfer(
ContactSearch* search,
double* restart_data,
int* error);

C FORTRAN(build_search_restart)(
double* restart_data,
int* node_global_ids,
int* face_global_ids,
int* mpi_communicator,
int* error);

FORTRAN(build_td_enf_restart)(
double* restart_data,
int* error);

FORTRAN(build_gap_removal_restart)(
double* restart_data,
int* error);

FORTRAN(build_tied_kin_restart(
double* restart_data,
46

Utility Functions
int* error);
FORTRAN(build_vol_tran_restart(

double* restart_data,
in* error);

Fortran build_search_restart(
restart_data,
node_global_ids,
face_global_ids,
mpi_communicator,
error)

build_td_enf_restart(
restart_data,
error)

build_gap_removal_restart(
restart_data,
error)

build_tied_kin_restart(
restart_data,
error)

build_vol_tran_restart(
restart_data,
error)

where

restart_data is an array of type double. The length of this array is obtained from the function
Restart_Size() (see the previous section).

node_global_ids is an array (whose length is twice the total number of nodes in all Node_Blocks)
containing the host code ID for each node. Each host code ID consists of two integers. For
node N, the array index 2*N contains the most significant word and the index 2*N+1 con-
tains the least significant word. The IDs for the first Node_Block are listed first in the ar-
ray, followed by the IDs for each of the other Node_Blocks in order (if applicable).

face_global_ids is an array (whose length is twice the total number of faces in all Face_Blocks)
containing the host code ID for each face. Each host code ID consists of two integers. For
face N, the array index 2*N contains the most significant word and the index 2*N+1 con-
tains the least significant word. The IDs for the first Face_Block are listed first in the ar-
ray, followed by the IDs for each of the other Face_Blocks in order (if applicable).

mpi_communicator is an MPI communicator if ACME was built for a parallel and is simply a dum-
my int otherwise.

search is the associated ContactSearch object for this enforcement object. This is hidden in the C
and Fortran APIs because only one search object is allowed.

error is the error return code that will reflect any errors that were detected.

2.4 Variable-Based Restart Functions

The variable-based restart functions allow a host code to extract all the restart variables
from the ACME objects variable by variable. This set of functions will eventually allow
restarts on different numbers of processors, although that capability is not supported in
this release. There are no separate constructors for this type of restart. Instead, the tradi-
tional constructor is used and then the variable-based data are “implanted.” ACME does
47

Utility Functions
support restarting analyses which contain shell faces (SHELLQUADFACEL4 and
SHELLTRIFACEL3) using the variable-based restart capability.

2.4.1 Obtaining the Number of General Restart Variables

These functions supply the number of general variables from each search and enforcement
object that need to be written to (or read from) a restart file. A general variable is a vari-
able that is true for an entire search or enforcement, and is not related to any specific node,
edge, or face.

C++ int
ContactSearch::Number_General_Restart_Variables();
int
ContactTDEnforcement::Number_General_Restart_Variables();
int
ContactGapRemoval::Number_General_Restart_Variables();
int
ContactTiedKinematics::Number_General_Restart_Variables();
int
ContactVolumeTransfer::Number_General_Restart_Variables();

C FORTRAN(search_num_general_rsvars)(int* num_nvars);
FORTRAN(td_enf_num_general_rsvars)(int* num_nvars);
FORTRAN(gap_removal_num_general_rsvars) (int* num_nvars

);
FORTRAN(tied_kin_num_general_rsvars)(int* num_nvars);
FORTRAN(vol_tran_num_general_rsvars)(int* num_nvars);

Fortran search_num_general_rsvars(num_vars)
td_enf_num_general_rsvars(num_nvars)
gap_removal_num_general_rsvars(num_nvars)
tied_kin_num_general_rsvars(num_nvars)
vol_tran_num_general_rsvars(num_nvars)

where

num_nvars is the number of general restart variables

2.4.2 Obtaining the Number of Nodal Restart Variables

These functions supply the number of nodal variables from each search and enforcement
object that need to be written to (or read from) a restart file.

C++ int
ContactSearch::Number_Nodal_Restart_Variables();
int
ContactTDEnforcement::Number_Nodal_Restart_Variables();
int
ContactGapRemoval::Number_Nodal_Restart_Variables();
int
ContactTiedKinematics::Number_Nodal_Restart_Variables();
int
48

Utility Functions
ContactVolumeTransfer::Number_Nodal_Restart_Variables();

C FORTRAN(search_num_node_rsvars)(int* num_nvars);
FORTRAN(td_enf_num_node_rsvars)(int* num_nvars);
FORTRAN(gap_removal_num_node_rsvars) (int* num_nvars);
FORTRAN(tied_kin_num_node_rsvars)(int* num_nvars);
FORTRAN(vol_tran_num_node_rsvars)(int* num_nvars);

Fortran search_num_node_rsvars(num_nvars)
td_enf_num_node_rsvars(num_nvars)
gap_removal_num_node_rsvars(num_nvars)
tied_kin_num_node_rsvars(num_nvars)
vol_tran_num_node_rsvars(num_nvars)

where

num_nvars is the number of nodal restart variables

2.4.3 Obtaining the Number of Edge Restart Variables

These functions supply the number of edge variables from each search and enforcement
object that need to be written to (or read from) a restart file. Currently, there are no edge-
based restart variables, so the ambiguity of how to handle the issue that edges are internal-
ly generated, not supplied by the host code, is deferred until edge-based restart variables
are required. These functions are included here to complete the API.

C++ int
ContactSearch::Number_Edge_Restart_Variables();
int
ContactTDEnforcement::Number_Edge_Restart_Variables();
int
ContactGapRemoval::Number_Edge_Restart_Variables();
int
ContactTiedKinematics::Number_Edge_Restart_Variables();
int
ContactVolumeTransfer::Number_Edge_Restart_Variables();

C FORTRAN(search_num_edge_rsvars)(int* num_evars);
FORTRAN(td_enf_num_edge_rsvars)(int* num_evars);
FORTRAN(gap_removal_num_edge_rsvars) (int* num_evars);
FORTRAN(tied_kin_num_edge_rsvars)(int* num_evars);
FORTRAN(vol_tran_num_edge_rsvars)(int* num_evars);

Fortran search_num_edge_rsvars(num_evars)
td_enf_num_edge_rsvars(num_evars)
gap_removal_num_edge_rsvars(num_evars)
tied_kin_num_edge_rsvars(num_evars)
vol_tran_num_edge_rsvars(num_evars)

where

num_evars is the number of edge restart variables
49

Utility Functions
2.4.4 Obtaining the Number of Face Restart Variables

These functions supply the number of face variables from each search and enforcement
object that need to be written to (or read from) a restart file.

C++ int
ContactSearch::Number_Face_Restart_Variables();
int
ContactTDEnforcement::Number_Face_Restart_Variables();
int
ContactGapRemoval::Number_Face_Restart_Variables();
int
ContactTiedKinematics::Number_Face_Restart_Variables();
int
ContactVolumeTransfer::Number_Face_Restart_Variables();

C FORTRAN(search_num_face_rsvars)(int* num_fvars);
FORTRAN(td_enf_num_face_rsvars)(int* num_fvars);
FORTRAN(gap_num_face_rsvars) (int* num_fvars);
FORTRAN(tied_kin_num_face_rsvars)(int* num_fvars);
FORTRAN(vol_tran_num_face_rsvars)(int* num_fvars);

Fortran search_num_face_rsvars(num_fvars)
td_enf_num_face_rsvars(num_fvars)
gap_num_face_rsvars(num_fvars)
tied_kin_num_face_rsvars(num_fvars)
vol_tran_num_face_rsvars(num_fvars)

where

num_fvars is the number of face restart variables

2.4.5 Obtaining the Number of Element Restart Variables

These functions supply the number of element variables from each search and enforce-
ment object that need to be written to (or read from) a restart file.

C++ int ContactSearch::Number_Element_Restart_Variables();
int
ContactTDEnforcement::Number_Element_Restart_Variables();
int
ContactGapRemoval::Number_Element_Restart_Variables();
int
ContactTiedKinematics::Number_Element_Restart_Variables();
int
ContactVolumeTransfer::Number_Element_Restart_Variables();

C FORTRAN(search_num_element_rsvars)(int* num_fvars);
FORTRAN(td_enf_num_element_rsvars)(int* num_fvars);
50

Utility Functions
FORTRAN(gap_num_element_rsvars) (int* num_fvars);
FORTRAN(tied_kin_num_element_rsvars)(int* num_fvars);
FORTRAN(vol_tran_num_element_rsvars)(int* num_fvars);

Fortran search_num_element_rsvars(num_fvars)
td_enf_num_element_rsvars(num_fvars)
gap_num_element_rsvars(num_fvars)
tied_kin_num_element_rsvars(num_fvars)
vol_tran_num_element_rsvars(num_fvars)

where

num_fvars is the number of element restart variables

2.4.6 Extracting the General Restart Variables

These functions extract the general variables that are required for restart for the search and
enforcement objects.

C++ ContactErrorCode
ContactSearch::Extract_General_Restart_Variable(

double* variable_data);
ContactErrorCode
ContactTDEnforcement::Extract_General_Restart_Variable(

double* variable_data);
ContactErrorCode
ContactGapRemoval::Extract_General_Restart_Variable(

double* variable_data);
ContactErrorCode
ContactTiedKinematics::Extract_General_Restart_Variable(

double* variable_data);
ContactErrorCode
ContactVolumeTransfer::Extract_General_Restart_Variable(

double* variable_data);

C FORTRAN(search_extract_general_rsvars)(
double* variable_data,
int* error);

FORTRAN(td_extract_general_rsvars)(
double* variable_data,
int* error);

FORTRAN(gap_extract_general_rsvars)(
double* variable_data,
int* error);

FORTRAN(tied_kin_extract_general_rsvars)(
double* variable_data,
int* error);

FORTRAN(vol_tran_extract_general_rsvars)(
double* variable_data,
int* error);

Fortran search_extract_general_rsvars(
51

Utility Functions
variable_data,
error)

td_extract_general_rsvars(
variable_data,
error)

gap_extract_general_rsvars(
variable_data,
error)

tied_kin_extract_general_rsvars)(
variable_data,
error)

vol_tran_extract_general_rsvars(
variable_data,
error)

where

variable_data is an array of type double. The length of the array is the number of global variables as
given by the functions described above.

error is the return error code for the C and Fortran APIs.

2.4.7 Implanting the General Restart Variables

These functions implant the general variables that are required for restart for the search
and enforcement objects.

C++ ContactErrorCode
ContactSearch::Implant_General_Restart_Variable(

double* variable_data);
ContactErrorCode
ContactTDEnforcement::Implant_General_Restart_Variable(

double* variable_data);
ContactErrorCode
ContactGapRemoval::Implant_General_Restart_Variable(

double* variable_data);
ContactErrorCode
ContactTiedKinematics::Implant_General_Restart_Variable(

double* variable_data);
ContactErrorCode
ContactVolumeTransfer::Implant_General_Restart_Variable(

double* variable_data);

C FORTRAN(search_implant_general_rsvars)(
double* variable_data,
int* error);

FORTRAN(td_implant_general_rsvars)(
double* variable_data,
int* error);

FORTRAN(gap_implant_general_rsvars)(
double* variable_data,
int* error);

FORTRAN(tied_kin_implant_general_rsvars)(
double* variable_data,
52

Utility Functions
int* error);
FORTRAN(voltrans_implant_general_rsvars)(

double* variable_data,
int* error);

Fortran search_implant_general_rsvars(
variable_data,
error)

td_implant_general_rsvars(
variable_data,
error)

gap_implant_general_rsvars(
variable_data,
error)

tied_kin_implant_general_rsvars(
variable_data,
error)

voltrans_implant_general_rsvars(
variable_data,
error)

where

variable_data is an array of type double. The length of the array is the number of global variables as
given by the functions described above.

error is the return error code for the C and Fortran APIs.

2.4.8 Extracting the Nodal Restart Variables

These functions extract the nodal variables, one by one, that are required for restart.

C++ ContactErrorCode
ContactSearch::Extract_Nodal_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTDEnforcement::Extract_Nodal_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactGapRemoval::Extract_Nodal_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTiedKinematics::Extract_Nodal_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactVolumeTransfer::Extract_Nodal_Restart_Variable(

int variable_number,
double* variable_data);
53

Utility Functions
C FORTRAN(search_extract_node_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(td_extract_node_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(gap_extract_node_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(tied_kin_extract_node_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(vol_tran_extract_node_rsvars)(
int variable_number,
double* variable_data,
int* error);

Fortran search_extract_node_rsvars(
variable_number,
variable_data,
error)

td_extract_node_rsvars(
variable_number,
variable_data,
error)

gap_extract_node_rsvars(
variable_number,
variable_data,
error)

tied_kin_extract_node_rsvars)(
int variable_number,
double* variable_data,
int* error);

vol_tran_extract_node_rsvars(
int variable_number,
double* variable_data,
int* error);

where

variable_number is the variable number (using Fortran indexing; i.e, from 1 to N).
variable_data is an array of type double. The length of the array is given by the number of nodes in

the surface topology for this processor (as supplied in the constructor).
error is the return error code for the C and Fortran APIs.

2.4.9 Implanting the Nodal Restart Variables

These functions implant the nodal variables, one by one, that are required for restart.
54

Utility Functions
C++ ContactErrorCode
ContactSearch::Implant_Nodal_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTDEnforcement::Implant_Nodal_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactGapRemoval::Implant_Nodal_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTiedKinematics::Implant_Nodal_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactVolumeTransfer::Implant_Nodal_Restart_Variable(

int variable_number,
double* variable_data);

C FORTRAN(search_implant_node_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(td_implant_node_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(gap_implant_node_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(tied_kin_implant_node_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(vol_tran_implant_node_rsvars)(
int variable_number,
double* variable_data,
int* error);

Fortran search_implant_node_rsvars(
variable_number,
variable_data,
error)

td_implant_node_rsvars(
variable_number,
variable_data,
error)

gap_implant_node_rsvars(
variable_number,
variable_data,
error)
55

Utility Functions
tied_kin_implant_node_rsvars(
variable_number,
variable_data,
error)

vol_tran_implant_node_rsvars(
variable_number,
variable_data,
error)

where

variable_number is the variable number (using Fortran indexing; i.e, from 1 to N).
variable_data is an array of type double. The length of the array is given by the number of nodes in

the surface topology for this processor (as supplied in the constructor).

2.4.10 Extracting the Edge Restart Variables

These functions extract the edge variables, one by one, that are required for restart. As pre-
viously mentioned, there are currently no edge-based restart variables, so these functions
will not be used in this version of ACME.

C++ ContactErrorCode
ContactSearch::Extract_Edge_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTDEnforcement::Extract_Edge_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactGapRemoval::Extract_Edge_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTiedKinematics::Extract_Edge_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactVolumeTransfer::Extract_Edge_Restart_Variable(

int variable_number,
double* variable_data);

C FORTRAN(search_extract_edge_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(td_extract_edge_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(gap_extract_edge_rsvars)(
int variable_number,
56

Utility Functions
double* variable_data,
int* error);

FORTRAN(tied_kin_extract_edge_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(vol_tran_extract_edge_rsvars)(
int variable_number,
double* variable_data,
int* error);

Fortran search_extract_edge_rsvars(
variable_number,
variable_data,
error)

td_extract_edge_rsvars(
variable_number,
variable_data,
error)

gap_extract_edge_rsvars(
variable_number,
variable_data,
error)

tied_kin_extract_edge_rsvars(
variable_number,
variable_data,
error)

vol_tran_extract_edge_rsvars(
variable_number,
variable_data,
error)

where

variable_number is the variable number (using Fortran indexing; i.e, from 1 to N).
variable_data is an array of type double. The length of the array is given by the number of edges in

the surface topology for this processor.

2.4.11 Implanting the Edge Restart Variables

These functions implant the edge variables, one by one, that are required for restart. As
previously mentioned, there are currently no edge-based restart variables so these func-
tions will not be used in this version of ACME.

C++ ContactErrorCode
ContactSearch::Implant_Edge_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTDEnforcement::Implant_Edge_Restart_Variable(

int variable_number,
double* variable_data);
57

Utility Functions
ContactErrorCode
ContactGapRemoval::Implant_Edge_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTiedKinematics::Implant_Edge_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactVolumeTransfer::Implant_Edge_Restart_Variable(

int variable_number,
double* variable_data);

C FORTRAN(search_implant_edge_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(td_implant_edge_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(gap_implant_edge_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(tied_kin_implant_edge_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(vol_tran_implant_edge_rsvars)(
int variable_number,
double* variable_data,
int* error);

Fortran search_implant_edge_rsvars(
variable_number,
variable_data,
error)

td_implant_edge_rsvars(
variable_number,
variable_data,
error)

gap_implant_edge_rsvars(
variable_number,
variable_data,
error)

tied_kin_implant_edge_rsvars(
variable_number,
variable_data,
error)

vol_tran_implant_edge_rsvars(
variable_number,
variable_data,
error)
58

Utility Functions
where

variable_number is the variable number (using Fortran indexing; i.e, from 1 to N).
variable_data is an array of type double. The length of the array is given by the number of edges in

the surface topology for this processor.

2.4.12 Extracting the Face Restart Variables

These functions extract the face variables, one by one, that are required for restart.

C++ ContactErrorCode
ContactSearch::Extract_Face_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTDEnforcement::Extract_Face_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactGapRemoval::Extract_Face_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTiedKinematics::Extract_Face_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactVolumeTransfer::Extract_Face_Restart_Variable(

int variable_number,
double* variable_data);

C FORTRAN(search_extract_face_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(td_extract_face_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(gap_extract_face_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(tied_kin_extract_face_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(vol_tran_extract_face_rsvars)(
int variable_number,
double* variable_data,
int* error);
59

Utility Functions
Fortran search_extract_face_rsvars(
variable_number,
variable_data,
error)

td_extract_face_rsvars(
variable_number,
variable_data,
error)

gap_extract_face_rsvars(
variable_number,
variable_data,
error)

tied_kin_extract_face_rsvars(
variable_number,
variable_data,
error)

vol_tran_extract_face_rsvars(
variable_number,
variable_data,
error)

where

variable_number is the variable number (using Fortran indexing; i.e, from 1 to N).
variable_data is an array of type double. The length of the array is given by the number of faces in

the surface topology for this processor (as supplied in the constructor).

2.4.13 Implanting the Face Restart Variables

These functions implant the face variables, one by one, that are required for restart.

C++ ContactErrorCode
ContactSearch::Implant_Face_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTDEnforcement::Implant_Face_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactGapRemoval::Implant_Face_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTiedKinematics::Implant_Face_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactVolumeTransfer::Implant_Face_Restart_Variable(

int variable_number,
double* variable_data);
60

Utility Functions
C FORTRAN(search_implant_face_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(td_implant_face_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(gap_implant_face_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(tied_kin_implant_face_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(vol_tran_implant_face_rsvars)(
int variable_number,
double* variable_data,
int* error);

Fortran search_implant_face_rsvars(
variable_number,
variable_data,
error)

td_implant_face_rsvars(
variable_number,
variable_data,
error)

gap_implant_face_rsvars(
variable_number,
variable_data,
error)

tied_kin_implant_face_rsvars(
variable_number,
variable_data,
error)

vol_tran_implant_face_rsvars(
variable_number,
variable_data,
error)

where

variable_number is the variable number (using Fortran indexing; i.e, from 1 to N).
variable_data is an array of type double. The length of the array is given by the number of faces in

the surface topology for this processor (as supplied in the constructor).

2.4.14 Extracting the Element Restart Variables

These functions extract the element variables, one by one, that are required for restart.
61

Utility Functions
C++ ContactErrorCode
ContactSearch::Extract_Element_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTDEnforcement::Extract_Element_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactGapRemoval::Extract_Element_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTiedKinematics::Extract_Element_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactVolumeTransfer::Extract_Element_Restart_Variable(

int variable_number,
double* variable_data);

C FORTRAN(search_extract_element_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(td_extract_element_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(gap_extract_element_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(tied_kin_extract_element_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(vol_tran_extract_element_rsvars)(
int variable_number,
double* variable_data,
int* error);

Fortran search_extract_element_rsvars(
variable_number,
variable_data,
error)

td_extract_element_rsvars(
variable_number,
variable_data,
error)

gap_extract_element_rsvars(
variable_number,
variable_data,
error)
62

Utility Functions
tied_kin_extract_element_rsvars(
variable_number,
variable_data,
error)

vol_tran_extract_element_rsvars(
variable_number,
variable_data,
error)

where

variable_number is the variable number (using Fortran indexing; i.e, from 1 to N).
variable_data is an array of type double. The length of the array is given by the number of elements

in the surface topology for this processor (as supplied in the constructor).

2.4.15 Implanting the Element Restart Variables

These functions implant the element variables, one by one, that are required for restart.

C++ ContactErrorCode
ContactSearch::Implant_Element_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTDEnforcement::Implant_Element_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactGapRemoval::Implant_Element_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactTiedKinematics::Implant_Element_Restart_Variable(

int variable_number,
double* variable_data);

ContactErrorCode
ContactVolumeTransfer::Implant_Element_Restart_Variable(

int variable_number,
double* variable_data);

C FORTRAN(search_implant_element_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(td_implant_element_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(gap_implant_element_rsvars)(
int variable_number,
double* variable_data,
int* error);
63

Utility Functions
FORTRAN(tied_kin_implant_element_rsvars)(
int variable_number,
double* variable_data,
int* error);

FORTRAN(vol_tran_implant_element_rsvars)(
int variable_number,
double* variable_data,
int* error);

Fortran search_implant_element_rsvars(
variable_number,
variable_data,
error)

td_implant_element_rsvars(
variable_number,
variable_data,
error)

gap_implant_element_rsvars(
variable_number,
variable_data,
error)

tied_kin_implant_element_rsvars(
variable_number,
variable_data,
error)

vol_tran_implant_element_rsvars(
variable_number,
variable_data,
error)

where

variable_number is the variable number (using Fortran indexing; i.e, from 1 to N).
variable_data is an array of type double. The length of the array is given by the number of elements

in the surface topology for this processor (as supplied in the constructor).

2.4.16 Completing a Variable-Based Restart

These functions must be called after constructing an ACME object and implanting the re-
start variables with the functions described previously. These functions restore each
ACME object to its state prior to restart. After these functions have been called, normal
calculations can resume.

C++ ContactErrorCode
ContactSearch::Complete_Restart();
ContactErrorCode
ContactTDEnforcement::Complete_Restart();
ContactErrorCode
ContactGapRemoval::Complete_Restart();
ContactErrorCode
ContactTiedKinematics::Complete_Restart();
ContactErrorCode
64

Utility Functions
ContactVolumeTransfer::Complete_Restart();

C FORTRAN(search_complete_restart)(int* error);
FORTRAN(td_enf_complete_restart)(int* error);
FORTRAN(gap_complete_restart)(int* error);
FORTRAN(tied_kin_complete_restart)(int* error);
FORTRAN(vol_tran_complete_restart)(int* error);

Fortran search_complete_restart(error)
td_enf_complete_restart(error)
gap_complete_restart(error)
tied_kin_complete_restart(error)
vol_tran_complete_restart(error)

where

error is the return error code for the C and Fortran APIs.

2.5 Creating an Exodus Plot File of the Search & Enforcement Data

ACME has the ability to write an ExodusII file that contains the full search topology and
all of the interaction data, including enforcement results. This function can be used only if
ACME was built with ExodusII support (a compile time option). See Section 1.11 for a
detailed description of the data written to the ExodusII file. The host code is required to
actually open and close the ExodusII file, so it must choose the name and location for the
file. This file must be opened with ICOMPWS=8. The ExodusII ID is then passed to AC-
ME, which writes the topology and the results data. Only one plot step can be written to
each file. The number of variables in the database depends on the number of interaction
types currently active in the search object (which can change each time step).

The prototype for this capability is:

C++ ContactErrorCode ContactSearch::Exodus_Output(
int exodus_id,
double time);

C FORTRAN(exodus_output)(
int* exodus_id,
double* time,
int* error);

Fortran exodus_output(
exodus_id,
time,
error)

where

exodus_id is the integer database ID returned by the ExodusII library from an ex_create call.
time is the time value for the “results” to be written to the ExodusII file.
error is the return error code for the C and Fortran APIs.
65

Utility Functions
66

Search Functions
3. Search Functions

This section describes functions that construct and operate on ContactSearch “objects.”
For the C++ API, these are true objects permitted by the object-oriented capabilities of the
language. There are no static variables, so an arbitrary number of objects may be simulta-
neously active. In the C and Fortran APIs, these functions create and operate on a Contact-
Search “object,” only one of which is currently allowed. Functions are provided to allow
destruction of the ContactSearch object and creation of a new object at any point. Multiple
objects can be supported in the future if the need ever arises.

There are two constructors for the ContactSearch object. The first, described in this sec-
tion, is intended for general use, while the second, described in Section 2, is used to con-
struct a search object using data read in from a previously generated restart file. The
ContactSearch object is neither copy-able nor assignable.

In each section delineating the ACME API functions (Sections 2, 3, 4, 5, and 6), the differ-
ent forms for the C++, C, and Fortran syntax are presented together for each function call.
The C++ API uses the full object-oriented capabilities of the language. On the other hand,
the C and Fortran APIs, which in actuality have been combined into a single interface, are
a collection of functions that have a pure C interface and can be called from either C or
Fortran routines. The FORTRAN macro that surrounds all calls in the C syntax converts
the function by appending an underscore to the end of the function name, if appropriate.
Because of this, all data in the C API must be passed by address, not by value. For Fortran,
there exists no capability to pass data by value, so simply specifying the name of the vari-
able or array will allow it to be passed appropriately.

The Search_Interface.h and Enforcement_Interface.h header files, located in the ACME
search and enforcement directories respectively, include the prototypes for the C and For-
tran functions described in this chapter. The ContactSearch.h and ContactEnforcement.h
files include the requisite C++ prototypes. Enumerations for symbolic types used in the
C++ API are also found in ContactSearch.h; these indicate the acceptable integral values
that may be used in the C and Fortran APIs.

3.1 Creating a ContactSearch Object

There is one general constructor for the ContactSearch object. A second constructor for re-
start is described in Section 2.3.2. The prototype for the general constructor is:

C++ ContactSearch::ContactSearch(
int dimensionality,
int number_of_states,
int number_of_entity_keys,
int number_of_node_blocks,
const ContactSearch::ContactNode_Type*

node_block_types,
const int* number_of_nodes_in_blocks,
const int* node_exodus_ids,
const int* node_global_ids,
67

Search Functions
int number_of_face_blocks,
const ContactSearch::ContactFace_Type*

face_block_types,
const int* number_of_faces_in_blocks,
const int* face_global_ids,
const int* face_connectivity,
int number_of_element_blocks,
const ContactSearch::ContactElement_Type*

element_block_types,
const int* number_of_elements_in_blocks,
const int* element_global_ids,
const int* element_connectivity,
int number_of_nodal_comm_partners,
const int* nodal_comm_proc_ids,
const int* number_of_nodes_to_partner,
const int* communication_nodes,
const MPI_Comm& mpi_communicator,
ContactErrorCode& error);

C FORTRAN(build_search)(
int* dimensionality,
int* number_of_states,
int* number_of_entity_keys,
int* number_of_node_blocks,
int* node_block_types,
int* number_of_nodes_in_blocks,
int* node_exodus_ids,
int* node_global_ids,
int* number_of_face_blocks,
int* face_block_types,
int* number_of_faces_in_blocks,
int* face_global_ids,
int* face_connectivity,
int* number_of_element_blocks,
int* element_block_types,
int* number_of_elements_in_blocks,
int* element_global_ids,
int* element_connectivity,
int* number_of_nodal_comm_partners,
int* nodal_comm_proc_ids,
int* number_of_nodes_to_partner,
int* communication_nodes,
int* mpi_communicator,
int* error);

Fortran build_search(
dimensionality,
number_of_states,
number_of_entity_keys,
number_of_node_blocks,
node_block_types,
number_of_nodes_in_blocks,
node_exodus_ids,
node_global_ids,
68

Search Functions
number_of_face_blocks,
face_block_types,
number_of_faces_in_blocks,
face_global_ids,
face_connectivity,
number_of_element_blocks,
element_block_types,
number_of_elements_in_blocks,
element_global_ids,
element_connectivity,
number_of_nodal_comm_partners,
nodal_comm_proc_ids,
number_of_nodes_to_partner,
communication_nodes,
mpi_communicator,
error);

where:

dimensionality is the number of spatial coordinates in the topology. Note: We are only supporting
three dimensions in this release. Two-dimensional support will be added in the future.

number_of_states is the number of states the host code requests to be stored. A value of 1 implies
that the ContactSearch object can not back up to an older state. A value of 2 will imply the
ContactSearch object can back up to one old state, etc. For this release, this value must be
1.

number_of_entity_keys is the number of entity keys that will be used. This is currently the sum of
the number of Face_Blocks and the number of Analytic_Surfaces.

number_of_node_blocks is the number of Node_Blocks in the topology. The first Node_Block
contains the nodes connected to the faces specified in the Face_Blocks; additional
Node_Blocks may contain other nodes that the host code needs to search against the faces.

node_block_types is an array (of length number_of_node_blocks) describing the type of nodes in
each Node_Block. The current enumeration for this type in the C++ API is:
enum ContactSearch::ContactNode_Type{ NODE=1 };

number_of_nodes_in_blocks is an array (of length number_of_node_blocks) that gives the number
of nodes in each Node_Block.

node_exodus_ids is an array (whose length is the total number of nodes in all Node_Blocks) con-
taining the Exodus ID for each node. The IDs for the first Node_Block are listed first in
the array, followed by the IDs for each of the other Node_Blocks in order (if applicable).

node_global_ids is an array (whose length is twice the total number of nodes in all Node_Blocks)
containing the host code ID for each node. Each host code ID consists of two integers. For
node N, the array index 2*N contains the most significant word and the index 2*N+1 con-
tains the least significant word. The IDs for the first Node_Block are listed first in the ar-
ray, followed by the IDs for each of the other Node_Blocks in order (if applicable).

number_of_face_blocks is the number of Face_Blocks in the topology.
face_block_types is an array (of length number_of_face_blocks) describing the type of faces in

each Face_Block. The current enumeration for this type in the C++ API is:
enum ContactSearch::ContactFace_Type{QUADFACEL4=1,

QUADFACEQ8=2, TRIFACEL3=3, TRIFACEQ6=4,
SHELLQUADFACEL4=5, SHELLTRIFACEL3=6};

number_of_faces_in_blocks is an array (of length number_of_face_blocks) that gives the number
of faces in each Face_Block.

face_global_ids is an array (whose length is twice the total number of faces in all Face_Blocks)
containing the host code ID for each face. Each host code ID consists of two integers. For
69

Search Functions
face N, the array index 2*N contains the most significant word and the index 2*N+1 con-
tains the least significant word. The IDs for the first Face_Block are listed first in the ar-
ray, followed by the IDs for each of the other Face_Blocks in order (if applicable).

face_connectivity is a one-dimensional array that gives the connectivity (using Fortran indexing in
the first Node_Block) for each face. The connectivity of each face is contiguous in memo-
ry and follows the ExodusII conventions for node order. The arrangement of this array
may change when multiple Node_Blocks containing nodes related to faces are supported.
Note that if the faces of shells are included, then both sides of the shell must be given as
faces: once with a clockwise numbering and once with a counter-clockwise numbering.

number_of_element_blocks is the number of Element_Blocks in the topology.
element_block_types is an array (of length number_of_element_blocks) describing the type of ele-

ments in each Element_Block. The current enumeration for this type in the C++ API is:
enum ContactSearch::ContactElement_Type

{CARTESIANHEXELEMENTL8=1, HEXELEMENTL8=1};
number_of_elements_in_blocks is an array (of length number_of_element_blocks) that gives the

number of elements in each Element_Block.
element_global_ids is an array (whose length is twice the total number of elements in all

Element_Blocks) containing the host code ID for each element. Each host code ID con-
sists of two integers. For element N, the array index 2*N contains the most significant
word and the index 2*N+1 contains the least significant word. The IDs for the first
Element_Block are listed first in the array, followed by the IDs for each of the other
Element_Blocks in order (if applicable).

element_connectivity is a one-dimensional array that gives the connectivity (using Fortran index-
ing in the first Node_Block) for each element. The connectivity of each element is contig-
uous in memory and follows the ExodusII conventions for node order. The arrangement of
this array may change when multiple Node_Blocks containing nodes related to elements
are supported.

number_of_nodal_comm_partners is the number of processors that share nodes with the topology
supplied to ACME on the current processor.

nodal_comm_proc_ids is an array (of length number_of_nodal_comm_partners) that lists the pro-
cessor IDs that share nodes with the topology supplied to ACME on the current processor.

number_of_nodes_to_partner is an array (of length number_of_nodal_comm_partners) that gives
the number of nodes shared with each processor in nodal_comm_proc_ids.

communication_nodes is an array that lists the nodes in the topology supplied to ACME that are
shared, grouped by processor in the order specified in nodal_comm_proc_ids.

mpi_communicator is an MPI_Communicator.
error is the error code. This reflects any errors detected during execution of this method. A non-

zero result indicates an error has occurred.

If the ACME library is built in pure serial mode (i.e., CONTACT_NO_MPI is defined
during compilation), then number_of_nodal_comm_partners should be set to 0 and dum-
my pointers can be supplied for nodal_comm_proc_ids, number_of_nodes_to_partner,
and communication_nodes. Furthermore, any integer value can be used for
mpi_communicator, which is ignored.

3.2 Updating a Search Object

If the topology of the search object changes (due to either element birth/death or dynamic
load balancing), then the search object’s topology can be updated with the interaction in-
formation preserved across the topology change. It is assumed that the dimensionality,
number_of_states, number_of_entity_keys, and the number and type of entity blocks stays
70

Search Functions
the same. This capability currently does not work if shell face types are present. The inter-
face to update a search object’s topology is:

C++ void ContactSearch::UpdateSearch(
const int* number_of_nodes_in_blocks,
const int* node_exodus_ids,
const int* node_global_ids,
const int* number_of_faces_in_blocks,
const int* face_global_ids,
const int* face_connectivity,
const int* number_of_elements_in_blocks,
const int* element_global_ids,
const int* element_connectivity,
int number_of_nodal_comm_partners,
const int* nodal_comm_proc_ids,
const int* number_of_nodes_to_partner,
const int* communication_nodes,
const int* number_of_exported_nodes,
const int* exported_nodes_global_ids,
const int* exported_nodes_proc_ids,
const int* number_of_exported_faces,
const int* exported_faces_global_ids,
const int* exported_faces_proc_ids,
const int* number_of_exported_elements,
const int* exported_elements_global_ids,
const int* exported_elements_proc_ids,
ContactErrorCode& error);

C FORTRAN(update_search)(
int* number_of_nodes_in_blocks,
int* node_exodus_ids,
int* node_global_ids,
int* number_of_faces_in_blocks,
int* face_global_ids,
int* face_connectivity,
int* number_of_elements_in_blocks,
int* element_global_ids,
int* element_connectivity,
int* number_of_nodal_comm_partners,
int* nodal_comm_proc_ids,
int* number_of_nodes_to_partner,
int* communication_nodes,
int* number_of_exported_nodes,
int* exported_nodes_global_ids,
int* exported_nodes_proc_ids,
int* number_of_exported_faces,
int* exported_faces_global_ids,
int* exported_faces_proc_ids,
int* number_of_exported_elements,
int* exported_elements_global_ids,
int* exported_elements_proc_ids,
int* error);
71

Search Functions
Fortran update_search(
number_of_nodes_in_blocks,
node_exodus_ids,
node_global_ids,
number_of_faces_in_blocks,
face_global_ids,
face_connectivity,
number_of_elements_in_blocks,
element_global_ids,
element_connectivity,
number_of_nodal_comm_partners,
nodal_comm_proc_ids,
number_of_nodes_to_partner,
communication_nodes,
number_of_exported_nodes,
exported_nodes_global_ids,
exported_nodes_proc_ids,
number_of_exported_faces,
exported_faces_global_ids,
exported_faces_proc_ids,
number_of_exported_elements,
exported_elements_global_ids,
exported_elements_proc_ids,
error);

where:

number_of_nodes_in_blocks is an array (of length number_of_node_blocks) that gives the number
of nodes in each Node_Block.

node_exodus_ids is an array (whose length is the total number of nodes in all Node_Blocks) con-
taining the Exodus ID for each node. The IDs for the first Node_Block are listed first in
the array, followed by the IDs for each of the other Node_Blocks in order (if applicable).

node_global_ids is an array (whose length is twice the total number of nodes in all Node_Blocks)
containing the host code ID for each node. Each host code ID consists of two integers. For
node N, the array index 2*N contains the most significant word and the index 2*N+1 con-
tains the least significant word. The IDs for the first Node_Block are listed first in the ar-
ray, followed by the IDs for each of the other Node_Blocks in order (if applicable).

number_of_faces_in_blocks is an array (of length number_of_face_blocks) that gives the number
of faces in each Face_Block.

face_global_ids is an array (whose length is twice the total number of faces in all Face_Blocks)
containing the host code ID for each face. Each host code ID consists of two integers. For
face N, the array index 2*N contains the most significant word and the index 2*N+1 con-
tains the least significant word. The IDs for the first Face_Block are listed first in the ar-
ray, followed by the IDs for each of the other Face_Blocks in order (if applicable).

face_connectivity is a one-dimensional array that gives the connectivity (using Fortran indexing in
the first Node_Block) for each face. The connectivity of each face is contiguous in memo-
ry and follows the ExodusII conventions for node order. The arrangement of this array
may change when multiple Node_Blocks containing nodes related to faces are supported.

number_of_elements_in_blocks is an array (of length number_of_element_blocks) that gives the
number of elements in each Element_Block.

element_global_ids is an array (whose length is twice the total number of elements in all
Element_Blocks) containing the host code ID for each element. Each host code ID con-
sists of two integers. For element N, the array index 2*N contains the most significant
72

Search Functions
word and the index 2*N+1 contains the least significant word. The IDs for the first
Element_Block are listed first in the array, followed by the IDs for each of the other
Element_Blocks in order (if applicable).

element_connectivity is a one-dimensional array that gives the connectivity (using Fortran index-
ing in the first Node_Block) for each element. The connectivity of each element is contig-
uous in memory and follows the ExodusII conventions for node order. The arrangement of
this array may change when multiple Node_Blocks containing nodes related to elements
are supported.

number_of_nodal_comm_partners is the number of processors that share nodes with the topology
supplied to ACME on the current processor.

nodal_comm_proc_ids is an array (of length number_of_nodal_comm_partners) that lists the pro-
cessor IDs that share nodes with the topology supplied to ACME on the current processor.

number_of_nodes_to_partner is an array (of length number_of_nodal_comm_partners) that gives
the number of nodes shared with each processor in nodal_comm_proc_ids.

communication_nodes is an array that lists the nodes in the topology supplied to ACME that are
shared, grouped by processor in the order specified in nodal_comm_proc_ids.

number_of_exported_nodes is the number of nodes that are in both the old and new topology but
reside on a different processor in the new topology. This is only applicable for dynamic
load balancing. Note: For this release, dynamic load balancing is not yet supported.

exported_nodes_host_ids is an array (of length 2*number_of_exported_nodes) containing the host
code ID for each node that is in both the old and new topology but resides on a different
processor in the new topology. Each host code ID consists of two integers. For node N, the
array index 2*N contains the most significant word and the index 2*N+1 contains the least
significant word. This is only applicable for dynamic load balancing.

exported_nodes_proc_ids is an array (of length number_of_exported_nodes) containing the proces-
sor ID of the processor that contains the node in the new topology. This is only applicable
for dynamic load balancing.

number_of_exported_faces is the number of faces that are in both the old and new topology but re-
side on a different processor in the new topology. This is only applicable for dynamic load
balancing. Note: For this release, dynamic load balancing is not yet supported.

exported_faces_host_ids is an array (of length 2*number_of_exported_faces) containing the host
code ID for each face that is in both the old and new topology but resides on a different
processor in the new topology. Each host code ID consists of two integers. For face N, the
array index 2*N contains the most significant word and the index 2*N+1 contains the least
significant word. This is only applicable for dynamic load balancing.

exported_faces_proc_ids is an array (of length number_of_exported_faces) containing the proces-
sor ID of the processor that contains the face in the new topology. This is only applicable
for dynamic load balancing.

number_of_exported_elements is the number of elements that are in both the old and new topology
but reside on a different processor in the new topology. This is only applicable for dynam-
ic load balancing. Note: For this release, dynamic load balancing is not yet supported.

exported_elements_host_ids is an array (of length 2*number_of_exported_elements) containing
the host code ID for each element that is in both the old and new topology but resides on a
different processor in the new topology. Each host code ID consists of two integers. For
element N, the array index 2*N contains the most significant word and the index 2*N+1
contains the least significant word. This is only applicable for dynamic load balancing.

exported_elements_proc_ids is an array (of length number_of_exported_elements) containing the
processor ID of the processor that contains the element in the new topology. This is only
applicable for dynamic load balancing.

error is the error code. This reflects any errors detected during execution of this method. A non-
zero result indicates an error has occurred.

If the ACME library is built in pure serial mode (i.e., CONTACT_NO_MPI is defined
during compilation), then number_of_nodal_comm_partners should be set to 0 and dum-
73

Search Functions
my pointers can be supplied for nodal_comm_proc_ids, number_of_nodes_to_partner,
and communication_nodes.

3.3 Search_Data Array

As described in Section 1.1.5, Search_Data is a three-dimensional Fortran-ordered array
for specifying entity pair data. The first index in the array refers to the data parameter, and
the next two indexes refer to the keys for the two entities for which that parameter is appli-
cable.

3.3.1 Checking the Search_Data Array Size

The following interface allows for checking the size of Search_Data expected by ACME.
This is intended to be a check by the host code to ensure that ACME and the host code
have a consistent view of the Search_Data array.

C++ ContactErrorCode ContactSearch::Check_Search_Data_Size(
int size_data_per_pair,
int number_of_entity_keys);

C FORTRAN(check_search_data_size)(
int* size_data_per_pair,
int* number_of_entity_keys,
int* error);

Fortran check_search_data_size(
size_data_per_pair,
number_of_entity_keys,
error)

where

size_data_per_pair is the number of data parameters for each entity pair (currently 3).
number_of_entity_keys is the number of entity keys.
error is the return error code for the C and Fortran APIs.

3.3.2 Setting Values in the Search_Data Array

The following interface allows the host code to specify the Search_Data array (see Section
1.1.5), which must be set prior to calling any of the search algorithms. This function can
be called at any time to change values in the Search_Data array (e.g., to change toleranc-
es).

C++ void ContactSearch::Set_Search_Data(
const double* search_data);

C FORTRAN(set_search_data)(
double* search_data);

Fortran set_search_data(
search_data)
74

Search Functions
where

search_data is an array of double precision values for the Search_Data (see Section 1.1.5).

3.4 Analytic_Surfaces

ACME supports the determination of interactions of nodes with Analytic_Surfaces. Cur-
rently, the only supported Analytic_Surfaces are a plane, a sphere, and two types of cylin-
ders (one for a container and one for a post). The types of Analytic_Surfaces supported
will be expanded in the future. The ACME ID for an Analytic_Surface is the number of
face blocks plus the order in which the surface was created.

The current enumeration for Analytic_Surface_Type in the C++ API is:

enum ContactSearch::AnalyticSurface_Type{
PLANE=1, SPHERE=2, CYLINDER_INSIDE=3, CYLINDER_OUTSIDE=4 };

3.4.1 Adding an Analytic_Surface

The interface to add an Analytic_Surface is:

C++ ContactErrorCode ContactSearch::Add_Analytic_Surface(
ContactSearch::AnalyticSurface_Type as_type,
const double* as_data);

C FORTRAN(add_analytic_surface)(
int* as_type,
double* as_data,
int* error);

Fortran add_analytic_surface(
as_type,
as_data,
error)

where

as_type is the type of the analytic surface from the ContactSearch::AnalyticSurface_Type enum.
as_data is an array dependent on the type of surface being added. The Analytic_Surface PLANE is

described by a point and a normal vector. The Analytic_Surface SPHERE is described by
its center and a radius. Two types of cylindrical surfaces are supported:
CYLINDER_INSIDE & CYLINDER_OUTSIDE. CYLINDER_INSIDE is intended as a
cylindrical container which will define interactions to keep all nodes inside the cylinder.
CYLINDER_OUTSIDE is intended as a post which will define interactions to keep all
nodes outside the cylinder. Both types of cylindrical surfaces are described by a center
point, an axial direction, and a length (see Figure 13). Table 11 gives a complete descrip-
tion of the array data for each Analytic_Surface type.

error is the return error code for the C and Fortran APIs.
75

Search Functions
Figure 13 Analytic Cylindrical Surfaces

Table 11 C++ Data Description for Analytic_Surfaces

Plane Sphere Cylinder_
Inside

Cylinder_
Outside

as_data[0] X-Coordinate
of Point

X-Coordinate
of Center

X-Coordinate
of Center

X-Coordinate
of Center

as_data[1] Y-Coordinate
of Point

Y-Coordinate
of Center

Y-Coordinate
of Center

Y-Coordinate
of Center

as_data[2] Z-Coordinate of
Point

Z-Coordinate of
Center

Z-Coordinate of
Center

Z-Coordinate of
Center

as_data[3] X-Component
of Normal Vec-
tor

Radius X-Component
of Axial Vector

X-Component
of Axial Vector

as_data[4] Y-Component
of Normal Vec-
tor

Y-Component
of Axial Vector

Y-Component
of Axial Vector

as_data[5] Z-Component
of Normal Vec-
tor

Z-Component
of Axial Vector

Z-Component
of Axial Vector

as_data[6] Radius Radius

as_data[7] Length Length

Radius
Axial Direction

Length Center
76

Search Functions
3.4.2 Setting the Analytic_Surface Configuration

The following interface updates the configuration(s) for an Analytic_Surface.

C++ ContactErrorCode
ContactSearch::Set_Analytic_Surface_Configuration(

int as_id,
const double* as_data);

C FORTRAN(set_analytic_surface_configuration)(
int* as_id,
double* as_data,
int* error);

Fortran set_analytic_surface_configuration(
as_id,
as_data,
error)

where

as_id is the ACME ID for the Analytic_Surface.
as_data is described in Table 11.
error is the return error code for the C and Fortran APIs.

3.5 Node_Block Data

Currently, the only valid type of Node_Block is NODE. Future releases of ACME will in-
clude NODE_WITH_SLOPE and NODE_WITH_RADIUS.

3.5.1 Setting the Node_Block Configuration

The following interface allows the host code to specify the configuration(s) for the nodes
by Node_Block. This function can be called at any time but must be called prior to the first
search. For a one-configuration search, only the current configuration needs to be speci-
fied. For two-configuration searches, both current and predicted configurations must be
specified. This function should be called every time the nodal positions in the host code
are updated. The prototype for this function is:

C++ ContactErrorCode
ContactSearch::Set_Node_Block_Configuration(

ContactSearch::ContactNode_Configuration
config_type,

int node_block_id,
const double* positions);

C FORTRAN(set_node_block_configuration)(
int* config_type,
int* node_block_id,
double* positions,
int* error);
77

Search Functions
Fortran set_node_block_configuration(
config_type,
node_block_id,
positions,
error)

where:

config_type is an enumeration in the C++ API for the configuration:
enum ContactSearch::ContactNode_Configuration {

CURRENT_CONFIG=1, PREDICTED_CONFIG=2 };
node_block_id is the ACME ID for the Node_Block.
positions is an array that holds the nodal positions for every node in the Node_Block.The data in

this array is ordered by x, y and z locations of node 1, followed by x, y and z locations of
node 2, etc.

error is the return error code for the C and Fortran APIs.

3.5.2 Setting the Node_Block Kinematic Constraints

The following function informs the ContactSearch object about kinematic constraints for
the nodes. If these are specified, the interactions are made consistent with the constraints.
Also, the ContactTDEnforcement object computes contact forces that are consistent with
these constraints.

C++ ContactErrorCode
ContactSearch::Set_Node_Block_Kinematic_Constraints(

int node_block_id,
const int* constraints_per_node,
const double* constraint_vector);

C FORTRAN(set_node_block_kin_cons)(
int* node_block_id,
int* constraints_per_node,
double* constraint_vector,
int* error);

Fortran set_node_block_kin_cons(
node_block_id,
constraints_per_node,
constraint_vector,
error)

where

node_block_id is the ACME ID for this Node_Block
constraints_per_node is how many degrees of freedom are constrained (i.e., 0, 1, 2 or 3).
constraint_vector is a vector for each node that describes the constraint direction. If

constraints_per_node is 0 or 3, this vector should be set to 0. If constraints_per_node is 1,
this vector should be the constrained direction. If constraints_per_node is 2, this vector
should be the unconstrained direction.

error is the return error code for the C and Fortran APIs.
78

Search Functions
3.5.3 Setting the Node_Block Attributes

The following function will be used to add Node_Block attributes, such as the projection
direction for all node types, the slope for NODE_WITH_SLOPE nodes, or the radius for
NODE_WITH_RADIUS nodes. Currently, the only attribute supported is the projection
direction.

C++ ContactErrorCode
ContactSearch::Set_Node_Block_Attributes(

ContactSearch::Node_Block_Attribute attribute,
int node_block_id,
const double* attributes);

C FORTRAN(set_node_block_attributes)(
int* attribute,
int* node_block_id,
double* attributes,
int* error);

Fortran set_node_block_attributes(
attribute,
node_block_id,
attributes,
error)

where

attribute is an enumeration in the C++ API for the attribute type:
enum ContactSearch::Node_Block_Attribute {

PROJECTION_DIRECTION=0 };
node_block_id is the ACME ID for this Node_Block.
attributes is an array of the attribute values for this Node_Block.
error is the return error code for the C and Fortran APIs.

3.6 Face_Block Data

3.6.1 Setting the Face_Block Attributes

The following function will be used to add Face_Block attributes. Currently, the only at-
tribute supported is the thickness of shell face types.

C++ ContactErrorCode
ContactSearch::Set_Face_Block_Attributes(

ContactSearch::Face_Block_Attribute attribute,
int face_block_id,
const double* attributes);

C FORTRAN(set_face_block_attributes)(
int* attribute,
int* face_block_id,
double* attributes,
int* error);
79

Search Functions
Fortran set_face_block_attributes(
attribute,
face_block_id,
attributes,
error)

where

attribute is an enumeration in the C++ API for the attribute type:
enum ContactSearch::Face_Block_Attribute {

SHELL_THICKNESS=1 };
face_block_id is the ACME ID for this Face_Block.
attributes is an array of the attribute values for this Face_Block.
error is the return error code for the C and Fortran APIs.

3.7 Table Data

The following function will be used to add a generic table of x-y data pairs. Currently, the
only use of tables is in some of the explicit transient dynamic friction models used during
enforcement.

C++ ContactErrorCode
ContactSearch::Add_Table(

int id,
int number_of_points,
double* abscissa,
double* ordinate);

C FORTRAN(add_table)(
int* id,
int* number_of_points,
double* abscissa,
double* ordinate,
int* error);

Fortran add_table(
id,
number_of_points,
abscissa,
ordinate
error)

where

id is the ACME ID for the table.
number_of_points is the number of entries in the table.
abscissa is an array of the x-values for this table.
ordinate is an array of the y-values for this rable.
error is the return error code for the C and Fortran APIs.
80

Search Functions
3.8 Search Algorithms

3.8.1 Setting the Search Option

By default, both multiple interactions and normal smoothing options are inactive. The fol-
lowing function should be called to activate, deactivate, and control multiple interactions
and normal smoothing.

C++ ContactErrorCode ContactSearch::Set_Search_Option(
ContactSearch::Search_Option option,
ContactSearch::Search_Option_Status status,
double* data);

C FORTRAN(set_search_option)(
int* option,
int* status,
double* data,
int* error);

Fortran set_search_option(
option,
status,
data,
error)

where

option is an enumeration in the C++ API:
enum ContactSearch::Search_Option {

MULTIPLE_INTERACTIONS=0,
NORMAL_SMOOTHING=1};

status is another enumeration:
enum ContactSearch::Search_Option_Status {

INACTIVE=0,
ACTIVE=1};

data is an array whose first member contains the angle above which the edge between faces is con-
sidered to be sharp instead of non-sharp (rounded), and whose second and third members
(valid only for the NORMAL_SMOOTHING option) contain the distance in isoparamet-
ric coordinates over which normal smoothing is calculated and the smoothing resolution
algorithm, respectively. The integer specifying the smoothing resolution algorithm can
take the values USE_NODE_NORMAL=0 or USE_EDGE_BASED_NORMAL=1. See
the section on Normal Smoothing in the introduction for more information about the
smoothing resolution algorithm.

error is the return error code for the C and Fortran APIs.

3.8.2 Performing a Static 1-Configuration Search

The following function performs a static 1-configuration search and can be called only af-
ter a current configuration has been specified.

C++ ContactErrorCode
ContactSearch::Static_Search_1_Configuration();
81

Search Functions
C FORTRAN(static_search_1_configuration)(
int* error);

Fortran static_search_1_configuration(
error);

where

error is the return error code for the C and Fortran APIs.

3.8.3 Performing a Static 2-Configuration Search

The following function performs a static 2-configuration search and can be called only if
both current and predicted configurations have been specified.

C++ ContactErrorCode
ContactSearch::Static_Search_2_Configuration();

C FORTRAN(static_search_2_configuration)(
int* error);

Fortran static_search_2_configuration(
error)

where

error is the return error code for the C and Fortran APIs.

3.8.4 Performing a Dynamic 2-Configuration Search

The following function performs a dynamic 2-configuration search and can be called only
if both the current and predicted configurations have been specified.

C++ ContactErrorCode
ContactSearch::Dynamic_Search_2_Configuration();

C FORTRAN(dynamic_search_2_configuration)(
int* error);

Fortran dynamic_search_2_configuration(
error)

where

error is the return error code for the C and Fortran APIs.

3.8.5 Performing a Dynamic Augmented 2-Configuration Search

The following function performs a dynamic augmented 2-configuration search and can be
called only if both the current and predicted configurations have been specified and a Con-
tactTDEnforcement object has been registered with the search.
82

Search Functions
C++ ContactErrorCode
ContactSearch::Dynamic_Search_Augmented_2_Configuration(

double* mass,
double dt_old,
double dt);

C FORTRAN(dynamic_search_aug_2_config)(
double* mass,
double* dt_old,
double* dt,
int* error);

Fortran dynamic_search_aug_2_config(
mass,
dt_old,
dt,
error)

where

mass is an array that gives the mass of each node.
dt_old is the time step for the previous step.
dt is the time step for the current time step.
error is the return error code for the C and Fortran APIs.

3.9 Interactions

The functions in this section allow the host code to extract the interactions from the Con-
tactSearch object. Typically, the host code should first determine how much memory is
needed to hold the interactions before extracting the interactions. ACME does not current-
ly support the extraction of interactions involving shells.

3.9.1 Getting the Size of NodeFace_Interactions

The following function allows the host code to determine how many
NodeFace_Interactions are currently defined in a ContactSearch object and the data size
for each interaction.

C++ void ContactSearch::Size_NodeFace_Interactions(
int& number_of_interactions,
int& nfi_data_size);

C FORTRAN(size_nodeface_interactions)(
int* number_of_interactions,
int* nfi_data_size);

Fortran size_nodeface_interactions(
number_of_interactions,
nfi_data_size)

where
83

Search Functions
number_of_interactions is the number of active NodeFace_Interactions that will be returned by the
function Get_NodeFace_Interactions (see section 3.9.2).

nfi_data_size is the number of double precision values returned for each interaction.

3.9.2 Extracting NodeFace_Interactions

The following function allows the host code to extract the active NodeFace_Interactions
from the ContactSearch object.

C++ void ContactSearch::Get_NodeFace_Interactions(
int* node_block_ids,
int* node_indexes_in_block,
int* node_entity_keys,
int* face_block_ids,
int* face_indexes_in_block,
int* face_procs,
double* nfi_data);

C FORTRAN(get_nodeface_interactions)(
int* node_block_ids,
int* node_indexes_in_block,
int* node_entity_keys,
int* face_block_ids,
int* face_indexes_in_block,
int* face_procs,
double* nfi_data);

Fortran get_nodeface_interactions(
node_block_ids,
node_indexes_in_block,
node_entity_keys,
face_block_ids,
face_indexes_in_block,
face_procs,
nfi_data)

where

node_block_ids is an array (of length number_of_interactions) that contains the Node_Block ID for
the node in each interaction.

node_indexes_in_block is an array (of length number_of_interactions) that contains the index in
the Node_Block (using Fortran indexing conventions) for the node in each interaction.

node_entity_keys is an array (of length number_of_interactions) that contains the node entity key
for this interaction.

face_block_ids is an array (of length number_of_interactions) that contains the Face_Block ID for
the face in each interaction.

face_indexes_in_block is an array (of length number_of_interactions) that contains the index in the
Face_Block (using Fortran indexing conventions) for the face in each interaction.

face_procs is an array (of length number_of_interactions) that contains the processor that owns the
face in each interaction.

nfi_data is an array (of length number_of_interactions*nfi_data_size) that contains the data for
each interaction (see Section 1.3.1). The data for each interaction is contiguous (i.e., the
first nfi_data_size locations contain the data for the first interaction).
84

Search Functions
3.9.3 Getting the Size of NodeSurface_Interactions

The following function allows the host code to determine how many interactions are cur-
rently defined in a ContactSearch object and the data size for each interaction.

C++ void ContactSearch::Size_NodeSurface_Interactions(
int& number_of_interactions,
int& nsi_data_size);

C FORTRAN(size_nodesurface_interactions)(
int* number_of_interactions,
int* nsi_data_size);

Fortran size_nodesurface_interactions(
number_of_interactions,
nsi_data_size)

where

number_of_interactions is the number of active NodeSurface_Interactions that will be returned by
the function Get_NodeSurface_Interactions (see section 3.9.4).

nsi_data_size is the number of double precision values returned for each interaction.

3.9.4 Extracting NodeSurface_Interactions

The following function allows the host code to extract the active
NodeSurface_Interactions from the ContactSearch object.

C++ void ContactSearch::Get_NodeSurface_Interactions(
int* node_block_ids,
int* node_indexes_in_block,
int* analyticsurface_ids,
double* nsi_data);

C FORTRAN(get_nodesurface_interactions)(
int* node_block_ids,
int* node_indexes_in_block,
int* analyticsurface_ids,
double* nsi_data);

Fortran get_nodesurface_interactions(
node_block_ids,
node_indexes_in_block,
analyticsurface_ids,
nsi_data)

where
85

Search Functions
node_block_ids is an array (of length number_of_interactions) that contains the Node_Block ID for
the node in each interaction.

node_indexes_in_block is an array (of length number_of_interactions) that contains the index in
the Node_Block (using Fortran indexing conventions) for the node in each interaction.

analyticsurface_ids is an array (of length number_of_interactions) that contains the ID of the
Analytic_Surface for each interaction.

nsi_data is an array (of length number_of_interactions*nsi_data_size) that contains the data for
each interaction (see Section 1.3.2). The data for each interaction is contiguous (i.e., the
first nsi_data_size locations contain the data for the first interaction).

3.9.5 Getting the Size of FaceFace_Interactions

The following function allows the host code to determine how many
FaceFace_Interactions are currently defined in a ContactSearch object and the data size
for all interactions.

C++ void ContactSearch::Size_FaceFace_Interactions(
int& number_of_interactions,
int& ffi_data_size);

C FORTRAN(size_faceface_interactions)(
int* number_of_interactions,
int* ffi_data_size);

Fortran size_faceface_interactions(
number_of_interactions,
ffi_data_size)

where

number_of_interactions is the number of active FaceFace_Interactions that will be returned by the
function Get_FaceFace_Interactions (see section 3.9.6).

ffi_data_size is the number of double precision values returned for the entire set of
FaceFace_Interactions.

3.9.6 Extracting FaceFace_Interactions

The following function allows the host code to extract the active FaceFace_Interactions
from the ContactSearch object.

C++ void ContactSearch::Get_FaceFace_Interactions(
int* slave_face_block_ids,
int* slave_face_indexes_in_block,
int* master_face_block_ids,
int* master_face_indexes_in_block,
int* master_face_procs,
int* ffi_index,
double* ffi_data);
86

Search Functions
C FORTRAN(get_faceface_interactions)(
int* slave_face_block_ids,
int* slave_face_indexes_in_block,
int* master_face_block_ids,
int* master_face_indexes_in_block,
int* master_face_procs,
int* ffi_index,
double* ffi_data);

Fortran get_faceface_interactions(
slave_face_block_ids,
slave_face_indexes_in_block,
master_face_block_ids,
master_face_indexes_in_block,
master_face_procs,
ffi_index,
ffi_data)

where

slave_face_block_ids is an array (of length number_of_interactions) that contains the Face_Block
ID for the slave face in each interaction.

slave_face_indexes_in_block is an array (of length number_of_interactions) that contains the index
in the Face_Block (using Fortran indexing conventions) for the slave face in each interac-
tion.

master_face_block_ids is an array (of length number_of_interactions) that contains the Face_Block
ID for the master face in each interaction.

master_face_indexes_in_block is an array (of length number_of_interactions) that contains the in-
dex in the Face_Block (using Fortran indexing conventions) for the master face in each in-
teraction.

master_face_procs is an array (of length number_of_interactions) that contains the processor that
owns the master_face in each interaction.

ffi_index is an array (of length number_of_interactions) that contains the offset into the ffi_data ar-
ray for the data for each interaction (i.e., the data for interaction j begins at
ffi_data[ffi_index[j]]).

ffi_data is an array (of length ffi_data_size) that contains the data for each interaction (see Section
1.3.3). The data for each interaction is contiguous.

3.9.7 Getting the Size of FaceCoverage_Interactions

The following function allows the host code to determine how many
FaceCoverage_Interactions are currently defined in a ContactSearch object and the data
size for all the interactions.

C++ void ContactSearch::Size_FaceCoverage_Interactions(
int& number_of_interactions,
int& fci_data_size);

C FORTRAN(size_facecoverage_interactions)(
int* number_of_interactions,
int* fci_data_size);

Fortran size_facecoverage_interactions(
number_of_interactions,
87

Search Functions
fci_data_size)

where

number_of_interactions is the number of active FaceCoverage_Interactions that will be returned by
the function Get_FaceCoverage_Interactions (see section 3.9.8).

fci_data_size is the number of double precision values returned for the entire set of
FaceCoverage_Interactions.

3.9.8 Extracting FaceCoverage_Interactions

The following function allows the host code to extract the active
FaceCoverage_Interactions from the ContactSearch object.

C++ void ContactSearch::Get_FaceCoverage_Interactions(
int* face_block_ids,
int* face_indexes_in_block,
int* fci_index,
double* fci_data);

C FORTRAN(get_facecoverage_interactions)(
int* face_block_ids,
int* face_indexes_in_block,
int* fci_index,
double* fci_data);

Fortran get_facecoverage_interactions(
face_block_ids,
face_indexes_in_block,
fci_index,
fci_data);

where

face_block_ids is an array (of length number_of_interactions) that contains the Face_Block ID for
the face in each interaction.

face_indexes_in_block is an array (of length number_of_interactions) that contains the index in the
Face_Block (using Fortran indexing conventions) for the face in each interaction.

fci_index is an array (of length number_of_interactions) that contains the offset into the fci_data ar-
ray for the data for each interaction (i.e., the data for interaction j begins at
fci_data[fci_index[j]]).

fci_data is an array (of length fci_data_size) that contains the data for each interaction (see Section
1.3.4). The data for each interaction is contiguous.

3.9.9 Getting the Size of ElementElement_Interactions

The following function allows the host code to determine how many
ElementElement_Interactions are currently defined in a ContactSearch object and the data
size for all interactions.
88

Search Functions
C++ void ContactSearch::Size_ElementElement_Interactions(
int& number_of_interactions,
int& eei_data_size);

C FORTRAN(size_elementelement_interactions)(
int* number_of_interactions,
int* eei_data_size);

Fortran size_elementelement_interactions(
number_of_interactions,
eei_data_size)

where

number_of_interactions is the number of active ElementElement_Interactions that will be returned
by the function Get_ElementElement_Interactions (see section 3.9.10).

eei_data_size is the number of double precision values returned for the entire set of
ElementElement_Interactions.

3.9.10 Extracting ElementElement_Interactions

The following function allows the host code to extract the active
ElementElement_Interactions from the ContactSearch object.

C++ void ContactSearch::Get_ElementElement_Interactions(
int* slave_element_block_ids,
int* slave_element_indexes_in_block,
int* master_element_block_ids,
int* master_element_indexes_in_block,
int* master_element_procs,
int* eei_index,
double* eei_data);

C FORTRAN(get_elementelement_interactions)(
int* slave_element_block_ids,
int* slave_element_indexes_in_block,
int* master_element_block_ids,
int* master_element_indexes_in_block,
int* master_element_procs,
int* eei_index,
double* eei_data);

Fortran get_elementelement_interactions(
slave_element_block_ids,
slave_element_indexes_in_block,
master_element_block_ids,
master_element_indexes_in_block,
master_element_procs,
eei_index,
eei_data)
89

Search Functions
where

slave_element_block_ids is an array (of length number_of_interactions) that contains the
Element_Block ID for the slave element in each interaction.

slave_element_indexes_in_block is an array (of length number_of_interactions) that contains the
index in the Element_Block (using Fortran indexing conventions) for the slave element in
each interaction.

master_element_block_ids is an array (of length number_of_interactions) that contains the
Element_Block ID for the master element in each interaction.

master_element_indexes_in_block is an array (of length number_of_interactions) that contains the
index in the Element_Block (using Fortran indexing conventions) for the master element
in each interaction.

master_element_procs is an array (of length number_of_interactions) that contains the processor
that owns the master_element in each interaction.

eei_index is an array (of length number_of_interactions) that contains the offset into the eei_data
array for the data for each interaction (i.e., the data for interaction j begins at
eei_data[eei_index[j]]).

eei_data is an array (of length eei_data_size) that contains the data for each interaction (see Section
1.3.3). The data for each interaction is contiguous.

3.9.11 Deleting Interactions

The following function permits the host code to delete all previously found interactions
before conducting a new search. This function is of particular use when a single search ob-
ject conducts two different enforcements. For example, if an analysis uses both Contact-
GapRemoval and ContactTDEnforcement with a single ContactSearch object, then the
interactions used for ContactGapRemoval can negatively affect the ContactTDEnforce-
ment. In this case, it is better to delete the interactions determined for ContactGapRemov-
al before doing a search for ContactTDEnforcement.

C++ ContactErrorCode
ContactSearch::Delete_All_Interactions();

C FORTRAN(delete_all_interactions)();

Fortran delete_all_interactions()
90

Gap Removal Enforcement Functions
4. Gap Removal Enforcement Functions

The gap removal enforcement will compute a displacement increment needed to remove
overlaps, as discussed in Section 1.6. This section describes functions that construct and
operate on ContactGapRemoval “objects.” For the C++ API, these are true objects permit-
ted by the object-oriented capabilities of the language. In the C and Fortran APIs, these
functions create and operate on a ContactGapRemoval “object,” only one of which is cur-
rently allowed.

In each section delineating the ACME API functions (Sections 2, 3, 4, 5, and 6), the differ-
ent forms for the C++, C, and Fortran syntax are presented together for each function call.
The C++ API uses the full object-oriented capabilities of the language. On the other hand,
the C and Fortran APIs, which in actuality have been combined into a single interface, are
a collection of functions that have a pure C interface and can be called from either C or
Fortran routines. The FORTRAN macro that surrounds all calls in the C syntax converts
the function by appending an underscore to the end of the function name, if appropriate.
Because of this, all data in the C API must be passed by address, not by value. For Fortran,
there exists no capability to pass data by value, so simply specifying the name of the vari-
able or array will allow it to be passed appropriately.

The Enforcement_Interface.h header file, located in the ACME enforcement directory, in-
cludes the prototypes for the C and Fortran functions described in this chapter, and the
ContactGapRemoval.h file includes the C++ prototypes. Enumerations for symbolic types
used in the C++ API are also found in ContactEnforcement.h and ContactGapRemoval.h;
these indicate the acceptable integral values that may be used in the C and Fortran APIs.

ACME does not currently support gap removal enforcement for analyses which include
shell faces (SHELLQUADFACEL4 and SHELLTRIFACEL3).

4.1 Constructing a ContactGapRemoval Object

There is one general purpose constructor for the ContactGapRemoval object. There are
two restart constructors for this object. They are of the same form as all the other objects,
as discussed in Sections 1.9, 2.3, and 2.4, so they will not be discussed further in this sec-
tion.

The prototype for the initial ContactGapRemoval constructor is:

C++ ContactGapRemoval::ContactGapRemoval(
double* Enforcement_Data,
ContactSearch* search,
ContactSearch::ContactErrorCode& error);

C FORTRAN(build_gap_removal)(
double* Enforcement_Data,
int* error);

Fortran build_gap_removal(
91

Gap Removal Enforcement Functions
Enforcement_Data,
error);

where

Enforcement_Data is a real array (of length 1*(number of entity keys)*(number of entity keys))
that stores the kinematic partition factor. It is structured
[n_key*number_entity_keys+f_key] where n_key is the node key and f_key is the face
key. The kinematic partition factor controls the master/slave relationship between two en-
tities as described in Section 1.5.

search is the ContactSearch object from which the topology, interactions, and configurations are
obtained.

error is the error code (described in Section 1.7) that will reflect any errors that were detected.

4.2 Computing the Gap Removal Displacements

This member function computes the displacement increments necessary to remove any
initial gaps that are contained in the ContactSearch object topology. A static 1-configura-
tion search should be used to define the interactions prior to calling this member function
(regardless of the type of mechanics being solved).

C++ ContactErrorCode ContactGapRemoval::Compute_Gap_Removal(
double* displ_cor);

C FORTRAN(compute_gap_removal)(
double* displ_cor,
int* error);

Fortran compute_gap_removal(
displ_cor,
error)

where

displ_cor is the displacement correction needed at each node to remove the initial gaps.

4.3 Destroying a ContactGapRemoval Object

C++ ~ContactGapRemoval();

C FORTRAN(cleanup_gap_removal)();

Fortran cleanup_gap_removal()
92

Explicit Transient Dynamic Enforcement Functions
5. Explicit Transient Dynamic Enforcement Functions

This section describes functions that construct and operate on ContactTDEnforcement
“objects.” For the C++ API, these are true objects permitted by the object-oriented capa-
bilities of the language. In the C and Fortran APIs, these functions create and operate on a
ContactTDEnforcement “object,” only one of which is currently allowed.

In each section delineating the ACME API functions (Sections 2, 3, 4, 5, and 6), the differ-
ent forms for the C++, C, and Fortran syntax are presented together for each function call.
The C++ API uses the full object-oriented capabilities of the language. On the other hand,
the C and Fortran APIs, which in actuality have been combined into a single interface, are
a collection of functions that have a pure C interface and can be called from either C or
Fortran routines. The FORTRAN macro that surrounds all calls in the C syntax converts
the function by appending an underscore to the end of the function name, if appropriate.
Because of this, all data in the C API must be passed by address, not by value. For Fortran,
there exists no capability to pass data by value, so simply specifying the name of the vari-
able or array will allow it to be passed appropriately.

The Enforcement_Interface.h header file, located in the ACME enforcement directory, in-
cludes the prototypes for the C and Fortran functions described in this chapter, and the
ContactTDEnforcement.h file includes the C++ prototypes. Enumerations for symbolic
types used in the C++ API are also found in ContactEnforcement.h and ContactTDEn-
forcement.h; these indicate the acceptable integral values that may be used in the C and
Fortran APIs.

5.1 Creating a ContactTDEnforcement Object

There is one general purpose constructor for the ContactTDEnforcement object. There are
two restart constructors for this object. They are of the same form as all the other objects,
as discussed in Sections 1.9, 2.3, and 2.4, so they will not be discussed further in this sec-
tion.

The prototype for the initial ContactTDEnforcement constructor is:

C++ ContactTDEnforcement::ContactTDEnforcement(
const double* Enforcement_Data,
ContactSearch* search,
ContactSearch::ContactErrorCode& error);

C FORTRAN(build_td_enforcement)(
double* Enforcement_Data,
int* error);

Fortran build_td_enforcement(
Enforcement_Data,
error)

where
93

Explicit Transient Dynamic Enforcement Functions
Enforcement_Data is a real array (of length 2*(number of entity keys)*(number of entity keys))
that stores the kinematic partition factor and the friction model id. It is structured
[(n_key*number_entity_keys+f_key)*size_data_per_pair+variable_index] where n_key
is the node key and f_key is the face key. The kinematic partition factor controls the mas-
ter/slave relationship between two entities. A factor between 0 and 1 specifies a fixed ki-
nematic partitioning. A value of 2 indicates the code should compute this for each
interaction pair based on the physical data. The friction model id pertains to the constitu-
tive behavior of the interactions and is described in the following section.

search is the ContactSearch object from which the topology, interactions, and configurations are
obtained.

error is the error code (described in Section 1.7) that will reflect any errors that were detected.

5.2 Defining Enforcement Models

The contact behavior is controlled by enforcement models. Six types of enforcement mod-
els are currently supported; TD_FRICTIONLESS, TD_CONSTANT_FRICTION,
TD_TIED, TD_SPOT_WELD, TD_PRESSURE_DEPENDENT and
TD_VELOCITY_DEPENDENT, TD_POINT_WELD, TD_ADHESION,
TD_COHESIVE_ZONE. For the C++ API, please note that Add_Enforcement_Model is
a function inherited by ContactTDEnforcement. To define the enforcement model to be
used, the following function must be called:

C++ ContactSearch::ContactErrorCode
ContactEnforcement::Add_Enforcement_Model(

Enforcement_Model_Types type,
int* ID,
int* integer_data,
double* real_data);

C FORTRAN(td_add_enf_model)(
int* type,
int* id,
int* integer_data,
double* real_data,
int* error);

Fortran td_add_enf_model (
type,
id,
integer_data,
real_data,
error)

where

type is the enforcement model type (as shown in Table 12).
id is a positive integer identifier for the model.
integer_data is an array of integer data that is particular to the model (as shown in Table 12).
real_data is an array of real data that is particular to the model (as shown in Table 12).
error is the return error code for the C and Fortran APIs.
94

Explicit Transient Dynamic Enforcement Functions
Notes: NodeSurface_Interactions currently cannot use the TD_TIED and
TD_SPOT_WELD model types.

For the TD_FRICTIONLESS model, only compressive normal tractions are allowed to
enforce impenetrability.

The TD_CONSTANT_FRICTION model is a Coulomb model with the tangential traction
limit given by , where is the Friction Coefficient and is the normal pressure.

No relative motion is allowed for the TD_TIED model.

For the TD_SPOT_WELD model, the behavior is the same as the TD_TIED model until a
failure limit based on Normal and Tangential Capacity is reached. At this point, the model

Table 12 Transient Dynamic Enforcement Models and Data

Type Integer Data Real Data

TD_FRICTIONLESS = 1 None None

TD_CONSTANT_FRICTION=2 None Friction Coefficient

TD_TIED=3 None None

TD_SPOT_WELD=4 Failure_Steps
Failed_Model_ID

Normal Capacity
Tangential Capacity

TD_PRESSURE_DEPENDENT=5 None Friction Coefficient
Reference Pressure
Offset Pressure
Pressure Exponent

TD_VELOCITY_DEPENDENT=6 None Static Coefficient
Dynamic Coefficient
Velocity Decay

TD_POINT_WELD=7 Normal_Traction_
Function_ID
Tangential_Functi
on_Table_ID
Failure_Steps
Failed_Model_ID

Failure_Criterion_Exponen
t

TD_ADHESION=8 Adhesion_Functio
n_ID

None

TD_COHESIVE_ZONE=9 Traction_Displace
ment_Function_ID

Critical_Normal_Gap
Critical_Tangential_Gap

µp µ p
95

Explicit Transient Dynamic Enforcement Functions
takes the requested number of Failure Steps to transition to the Failed Model prescribed by
the Failed_Model_ID.

The TD_PRESSURE_DEPENDENT model is similar to the

TD_CONSTANT_FRICTION model, except the tangential limit is given by ,

where po is the Offset Pressure, pr is the Reference Pressure and k is the Pressure Expo-
nent.

The TD_VELOCITY_DEPENDENT model is also similar to the
TD_CONSTANT_FRICTION model, except here the tangential limit is given by

, where is the Static Coefficient, is the Dynamic Coefficient,
d is the Velocity Decay and is the magnitude of the (tangential) relative velocity.

The TD_POINT_WELD model is similar to the TD_SPOT_WELD model, except that in
the pre-failure regime, the interactions follow the force-displacement relations given by
the two tables Normal_Traction_Function (only in tension) and Tangential_
Traction_Function. The values of ordered pairs in these tables are expected to be non-neg-
ative and the last ordinates are used as critical force values for the failure criterion (i.e.
they can not be zero).

The TD_ADHESION model is an enhanced version of TD_FRICTIONLESS, where, in
tension, a restoring force is given by the tabular Adhesion_Function. The values of the
Adhesion_Function are expected to be non-negative.

The TD_COHESIVE _ZONE model follows Tvergaard and Hutchinson’s (1993) devel-
opments, where the normal and tangential cohesive tractions are coupled through a qua-
dratic failure variable. This variable is the only argument to a single (tabular) force-
displacement relation which is scaled by Critical_Normal_Gap and
Criticical_Tangential_Gap to obtain the tensile normal force and tangential force, respec-
tively. In compression the normal force sufficient to prevent penetration is used. Also,
since the failure variable is non-negative any part of the tabular force-displacement curve
with negative abscissas is ignored.

For all the models with adhesive/cohesive behavior (TD_ADHESION,
TD_COHESIVE_ZONE), the Search_Normal_Tolerance should be set to be exactly
equal to the Critical_Normal_Gap (in the case of TD_ADHESION, this is the last abscissa
of the Adhesion_Function table).

All models are currently force-based, i.e. they do not scale appropriately with changing el-
ement size. For a given element size, analysts can correct for this by scaling the input val-
ues of, say, the Traction_Displacement_Function of the TD_COHESIVE _ZONE model.
This will be corrected in future releases.

µ
p po+()

pr

k

µs µd–() d v–() µd+exp µs µd
v

96

Explicit Transient Dynamic Enforcement Functions
5.3 Controlling the Algorithm

The enforcement algorithms are iterative in nature (i.e., a predictor-corrector algorithm is
used). The accuracy of the algorithm can be improved by doing additional iterations. Ini-
tial testing indicates that 5 iterations dramatically improve the accuracy of the solution
(especially for frictional problems). If there is a mesh mismatch and the automatic kine-
matic partitioning is used, more iterations may be necessary. The following member func-
tion allows the user to set the number of iterations to use (the default is 1 if it is not
explicitly set).

C++ ContactSearch::ContactErrorCode
ContactTDEnforcement::Set_Number_of_Iterations(

int number_iterations);

C FORTRAN(set_td_iterations)(
int* number_iterations,
int* error);

Fortran set_td_iterations(
number_iterations,
error);

where

number_iterations is the number of iterations to use in the enforcement.
error is the return error code for the C and Fortran APIs.

5.4 Specifying Symmetric Nodes

This enforcement was originally written for Lagrangian based contact. Its use has expand-
ed to a number of codes and algorithms including ALEGRA/SHISM which is a coupled
Lagrangian/ALE technique for modeling penetration events (e.g., earth penetrators, ar-
mor, etc.). Due to the formulation of this problem, the tip of the penetrator must be treated
in a different manner than a typical contact. Specifically, the tip node of the penetrator and
the corresponding node of the ALE mesh must have consistent constraints. The search
does not give the symmetric interactions in general. The ability to enforce this symmetry
is provided with the following function. This should ONLY be used with the ALEGRA/
SHISM capability.

C++ ContactSearch::ContactErrorCode
ContactTDEnforcement::Enforce_Symmetry_on_Nodes(

int exodus_id_1,
int exodus_id_2);

C FORTRAN(set_td_enf_symm_nodes)(
int* exodus_id_1,
int* exodus_id_2,
int* error);

FORTRAN set_td_enf_symm_nodes(
97

Explicit Transient Dynamic Enforcement Functions
exodus_id_1,
exodus_id_2,
error);

where

exodus_id_1 is the exodus id of the tip node of the penetrator.
exodus_id_2 is the exodus id of the corresponding node on the ALE target mesh.
error is the return error code for the C and Fortran APIs.

5.5 Computing the Contact Forces

The following member function computes the contact forces necessary to enforce the con-
tact constraints that are contained in the ContactSearch object.

C++ ContactSearch::ContactErrorCode
ContactTDEnforcement::Compute_Contact_Force(

double dt_old,
double dt,
double* mass,
double* density,
double* wavespeed,
double* force);

C FORTRAN(compute_td_contact_force)(
double* dt_old,
double* dt,
double* mass,
double* density,
double* wavespeed
double* force,
int* error);

Fortran compute_td_contact_force(
dt_old,
dt,
mass,
density,
wavespeed,
force,
error)

where

dt_old is the previous time step for a central difference integrator.
dt is the current time step for a central difference integrator.
mass is an array that contains the nodal mass for each node.
density an array that contains the nodal “density”. Computing this as the nodal mass divided by the

sum of the contributing element volumes works well. This array is used in computing the
automatic kinematic partitioning.
98

Explicit Transient Dynamic Enforcement Functions
wavespeed is an array that contains the nodal “wavespeed”. Computing this as the average of the
contributing element wavespeeds works well. This array is used in computing the auto-
matic kinematic partitioning.

force is the return array containing the computed contact force vectors for each node.
error is the return error code for the C and Fortran APIs.

5.6 Extracting Plot Variables

The ContactTDEnforcement includes support for extracting variables that can be useful
for plotting. The variables that can be extracted are listed in Table 13.

Table 13 TD Plot Variables

Plot Variable Description

CONFACE = 1 The value of CONFACE denotes status of
interactions at a node. A value of 0.5 indi-
cates the node is not in contact. A value of
1, 2, or 3 denotes the number of interac-
tions at that node.

NORMAL_FORCE_MAG = 2 This variable holds the normal force mag-
nitude for the node. If multiple constraints
exist at a node, this value is for the last
constraint.

TANGENTIAL_FORCE_MAG = 3 This variable holds the tangential force
magnitude for the node. If multiple con-
straints exist at this node, the value is for
the last constraint.

CDIRNOR[XYZ] = [4,5,6] The vector components of the normal
direction for the constraint at a node are
held in CDIRNOR. If multiple constraints
exist at a node, these values are for the last
constraint.

CDIRTAN[XYZ] = [7,8,9] The vector components of the tangential
direction for the constraint at a node are
held in CDIRTAN. If multiple constraints
exists at a node, these values are for the
last constraint.
99

Explicit Transient Dynamic Enforcement Functions
The interface for getting these variables is:

C++ ContatSearch::ContactErrorCode
ContactTDEnforcement::Get_Plot_Variable(

Contact_TDEnf_Plot_Vars plot_var,
Real* data);

C FORTRAN(get_td_plot_variable)(
int& plot_var,
Real* data,
int& error);

Fortran get_td_plot_variable(
plot_var,
data,
error)

where

plot_var is the value for the variable given in Table 13.
data is an array (number of nodes long) in which the values will be loaded.
error is the return error code.

5.7 Destroying a ContactTDEnforcement Object

C++ ~ContactTDEnforcement();

C FORTRAN(cleanup_td_enforcement)();

Fortran cleanup_td_enforcement()

SLIPMAG = 10 SLIPMAG is the incremental slip for this
time step at a node. If multiple constraints
exist at a node, this value is for the last
constraint

Table 13 TD Plot Variables

Plot Variable Description
100

Tied Kinematics Enforcement Functions
6. Tied Kinematics Enforcement Functions

The ContactTiedKinematics object will compute positions for nodes to satisfy a no-rela-
tive-motion requirement (limited to a pure master-slave relationship) as discussed in Sec-
tion 1.7. For the C++ API, these are true objects permitted by the object-oriented
capabilities of the language. In the C and Fortran APIs, these functions create and operate
on a ContactTiedKinematics “object,” only one of which is currently allowed.

In each section delineating the ACME API functions (Sections 2, 3, 4, 5, and 6), the differ-
ent forms for the C++, C, and Fortran syntax are presented together for each function call.
The C++ API uses the full object-oriented capabilities of the language. On the other hand,
the C and Fortran APIs, which in actuality have been combined into a single interface, are
a collection of functions that have a pure C interface and can be called from either C or
Fortran routines. The FORTRAN macro that surrounds all calls in the C syntax converts
the function by appending an underscore to the end of the function name, if appropriate.
Because of this, all data in the C API must be passed by address, not by value. For Fortran,
there exists no capability to pass data by value, so simply specifying the name of the vari-
able or array will allow it to be passed appropriately.

The Enforcement_Interface.h header file, located in the ACME enforcement directory, in-
cludes the prototypes for the C and Fortran functions described in this chapter, and the
ContactTiedKinematics.h file includes the C++ prototypes. Enumerations for symbolic
types used in the C++ API are also found in ContactEnforcement.h and ContactTiedKine-
matics.h; these indicate the acceptable integral values that may be used in the C and For-
tran APIs.

Currently, a tied interaction between the edge of a shell and another face is enforced as a
pinned connection, i.e. the relative motion of the nodes on the shell edge do not move, but
the shell is free to rotate about the edge.

6.1 Constructing a ContactTiedKinematics Object

There is one general purpose constructor for the ContactTiedKinematics object. There are
two restart constructors for this object. They are of the same form as all the other objects,
as discussed in Sections 1.9, 2.3, and 2.4, so they will not be discussed further in this sec-
tion.

The prototype for the initial ContactTiedKinematics constructor is:

C++ ContactTiedKinematics::ContactTiedKinematics(
double* Enforcement_Data,
ContactSearch* search,
ContactSearch::ContactErrorCode& error);

C FORTRAN(build_tied_kinematics)(
double* Enforcement_Data,
int* error);
101

Tied Kinematics Enforcement Functions
Fortran build_tied_kinematics(
Enforcement_Data,
error);

where

Enforcement_Data is a real array (of length 1*(number of entity keys)*(number of entity keys))
that stores the kinematic partition factor. It is structured
[n_key*number_entity_keys+f_key] where n_key is the node key and f_key is the face
key. The kinematic partition factor controls the master/slave relationship between two en-
tities as described in Section 1.5. For this object the kinematic partition MUST specify a
pure master/slave relationship.

search is the ContactSearch object from which the topology, interactions, and configurations are
obtained.

error is the error code (described in Section 1.7) that will reflect any errors that were detected.

6.2 Computing the ContactTiedKinematic Displacements

A static 1-configuration search should be used to define the interactions prior to calling
this member function. This function computes the final position of all nodes so that they
kinematically satisfy the tied constraints.

C++ ContactErrorCode
ContactTiedKinematics::Compute_Position(

double* position);

C FORTRAN(compute_tied_position)(
double* position,
int* error);

Fortran compute_tied_position(
position,
error)

where

position is an array of positions ordered (x,y,z) for node 1, (x,y,z) for node 2, etc. On input this is
the current positions of all nodes. On output it is the positions of all the nodes that satisfy
the no-relative-motion requirement between the slave nodes and the master surface face.

6.3 Destroying a ContactTiedKinematics Object

C++ ~ContactTiedKinematics();

C FORTRAN(cleanup_tied_kinematics)();

Fortran cleanup_tied_kinematics()
102

Volume Transfer
7. Volume Transfer

This section describes functions that construct and operate on ContactVolumeTransfer
“objects.” For the C++ API, these are true objects permitted by the object-oriented capa-
bilities of the language. In the C and Fortran APIs, these functions create and operate on a
ContactVolumeTransfer “object,” only one of which is currently allowed.

In each section delineating the ACME API functions, the different forms of the C++, C
and Fortran syntax are presented together for each function call. The C++ API uses the
full object-oriented capabilities of the language. The C and Fortran APIs are a collection
of functions that have a pure C interface and can be called from either C or Fortran rou-
tines. The FORTRAN macro that surrounds all calls in the C syntax converts the function
by appending an underscore to the end of the function name, if appropriate. Because of
this, all data in the C API must be passed by address and not value. For Fortran, it is not
possible to pass by value, so simply specifying the name of the variable or array is suffi-
cient.

The Enforcement_Interface.h header file, located in the ACME enforcement directory, in-
cludes the prototypes for the C and Fortran functions described in this chapter, and the
ContactVolumeTransfer.h file includes the C++ prototypes. Enumerations for symbolic
types used in the C++ API are also found in ContactEnforcement.h and ContactVolume-
Transfer.h; these indicate the acceptable integer values for the C and Fortran APIs.

7.1 Constructing a Volume TransferObject

There is one general purpose constructor for the ContactVolumeTransfer object. There are
two restart constructors for this object. They are of the same form as all the other objects,
as discussed in Sections 2.3 and 2.4, so they will not be discussed further in this section.

The prototype for the initial ContactVolumeTransfer constructor is:

C++ ContactVolumeTransfer::ContactVolumeTransfer(
const double* Enforcement_Data,
ContactSearch* search,
ContactSearch::ContactErrorCode& error);

C FORTRAN(build_vol_tran)(
double* Enforcement_Data,
int* error);

Fortran build_vol_tran(
Enforcement_Data,
error)

where,

Enforcement_Data is a real array. This array is currently unused and any data passed to the object is
ignored.

search is the ContactSearch object from which the topology, interactions, and configurations are
obtained.
103

Volume Transfer
error is the error code (described in Section 1.7) that will reflect any errors that were detected.

7.2 Computing the Transfered Element and Nodal Data

The following member function performs the transfer of element and nodal data from the
master to slave mesh. Nodal variable data is interpolated from the master (donor) to slave
(receiver) mesh using linear interpolation. Element variable data is mapped between the
two meshes using volume fraction weighting with the result being divided by the volume
fraction of the receiving mesh filled by the donor mesh (volume_fraction below). Output
includes both the transfered nodal and element variables and the volume fraction of the re-
ceiving mesh filled by the donor mesh.

C++ ContactSearch::ContactErrorCode
ContactVolumeTransfer::Compute_Volume_Transfer(

int num_node_vars,
int num_elem_vars,
const double* donor_node_vars,
const double* donor_elem_vars,
double* receiver_node_vars,
double* receiver_elem_vars,
double* volume_fraction);

C FORTRAN(compute_vol_tran)(
int num_node_vars,
int num_elem_vars,
double* donor_node_vars,
double* donor_elem_vars,
double* receiver_node_vars
double* receiver_elem_vars,
double* volume_fraction,
int* error);

Fortran compute_vol_tran(
num_node_vars,
num_elem_vars,
donor_node_vars,
donor_elem_vars,
receiver_node_vars,
receiver_elem_vars,
volume_fraction,
error)

where

num_node_vars is the number of nodal variables to be transfered.
num_elem_vars is the number of element variables to be transfered.
donor_node_vars is an array that contains the nodal variables to be transfered at each node and so is

num_node_vars*number_of_nodes long. The array is structured such that variables cycle
faster than nodes.

donor_elem_vars is an array that contains the element variables to be transfered at each node and so
is num_elem_vars*number_of_elems long. The element variables cycle faster than do the
elements.
104

Volume Transfer
receiver_node_vars is an array which is initially empty and is filled with the transfered nodal data.
The array is num_node_vars*number_of_nodes long and nodal variables cycle faster than
do the nodes.

receiver_elem_vars is an array which is initially empty and is filled with the transfered element da-
ta. The array is num_node_vars*number_of_elements long and nodal variables cycle fast-
er than do the nodes.

volume_fraction is an array number_of_elements long which, upon exit, contains the volume frac-
tion of the receiver elements filled by the donor elements.

7.3 Destroying a ContactVolumeTransfer Object

C++ ~ContactVolumeTransfer();

C FORTRAN(cleanup_vol_tran)();

Fortran cleanup_vol_tran()
105

Volume Transfer
106

MPC Enforcement
8. MPC Enforcement

This section describes functions that construct and operate on ContactMPCs “objects.”
For the C++ API, these are true objects permitted by the object-oriented capabilities of the
language. In the C and Fortran APIs, these functions create and operate on a ContactMPCs
“object,” only one of which is currently allowed.

In each section delineating the ACME API functions, the different forms of the C++, C
and Fortran syntax are presented together for each function call. The C++ API uses the
full object-oriented capabilities of the language. The C and Fortran APIs are a collection
of functions that have a pure C interface and can be called from either C or Fortran rou-
tines. The FORTRAN macro that surrounds all calls in the C syntax converts the function
by appending an underscore to the end of the function name, if appropriate. Because of
this, all data in the C API must be passed by address and not value. For Fortran, it is not
possible to pass by value, so simply specifying the name of the variable or array is suffi-
cient.

The Enforcement_Interface.h header file, located in the ACME enforcement directory, in-
cludes the prototypes for the C and Fortran functions described in this chapter, and the
ContactMPCs.h file includes the C++ prototypes. Enumerations for symbolic types used
in the C++ API are also found in ContactEnforcement.h and ContactMPCs.h; these indi-
cate the acceptable integer values for the C and Fortran APIs.

8.1 Constructing a ContactMPCs Object

There is one general purpose constructor for the ContactMPCs object. There are two re-
start constructors for this object. They are of the same form as all the other objects, as dis-
cussed in Sections 2.3 and 2.4, so they will not be discussed further in this section.

The prototype for the initial ContactMPCs constructor is:

C++ ContactMPCs::ContactMPCs(
const double* Enforcement_Data,
ContactSearch* search,
ContactSearch::ContactErrorCode& error);

C FORTRAN(build_mpc_eqns)(
double* Enforcement_Data,
int* error);

Fortran build_mpc_eqns(
Enforcement_Data,
error)

where,

Enforcement_Data is a real array. This array is currently unused and any data passed to the object is
ignored.

search is the ContactSearch object from which the topology, interactions, and configurations are
obtained.
107

MPC Enforcement
error is the error code (described in Section 1.7) that will reflect any errors that were detected.

8.2 Computing the Multiple Point Constraint (MPC) Equations

The following member function calculates the MPC equations when called. No output
(other than an error code) is returned.

C++ ContactSearch::ContactErrorCode
ContactMPCs::Compute_MPCs(

 Id_Numbering_Scheme id_num_scheme);

C FORTRAN(compute_mpc_eqns)(
int& id_num_scheme,
int* error);

Fortran compute_mpc_eqns(
id_num_scheme,
error)

where

id_num_scheme is the numbering scheme to be used when returning face and node ids. Choices are
HOST_GLOBAL_ID (= 1) or ACME_LOCAL_ID (= 2). When HOST_GLOBAL_ID is
chosen, face and node IDs are numbered as the face_global_ids and node_global_ids sup-
plied by the host code when the ContactSearch object was created (see Section 3.1). When
ACME_LOCAL_ID is selected, face and node IDs are returned as the local and owning
processor ID pairs.

error is the return error code for the C and Fortran APIs.

8.3 Getting the Number of MPC Equations

The following member function returns the number of MPC equations. This function must
be called after the Compute function of Section 8.2. This function returns the number of
MPC equations.

C++ ContactSearch::ContactErrorCode
ContactMPCs::Number_of_MPC_Equations(

 int& number_of_equations);

C FORTRAN(get_num_mpceqns)(
int& number_of_equations,
int* error);

Fortran get_num_mpceqns(
number_of_equations,
error)

where

number_of_equations is the number of MPC equations.
error is the return error code for the C and Fortran APIs.
108

MPC Enforcement
8.4 Getting the MPC Equations

The following member function returns the Multiple Point Constraint equations in terms
of the involved slave-nodes, master-faces, master-face nodes and associated constraint co-
efficients. This function must be called after getting the number of constraint equations
through a call to the function of Section 8.3.

C++ ContactSearch::ContactErrorCode
ContactMPCs::Get_MPC_Equations(

int number_of_equations,
int* snode_pid,
int* snode_lid,
int* mface_pid,
int* mface_lid,
int* nface_nodes,
int* fnode_pid,
int* fnode_lid,
double* fnode_coefs);

C FORTRAN(get_num_mpceqns)(
int& number_of_equations,
int* error);

Fortran get_num_mpceqns(
number_of_equations,
error)

where

number_of_equations is the number of MPC equations.
snode_pid is an array (number_of_equations long) containing the most significant word of the

slave node ID for each MPC equation. Either processor ID (ACME_LOCAL_ID) or the
most significant word in the host code global node ID (HOST_GLOBAL_ID) is returned.

snode_lid is an array (number_of_equations long) containing the least significant word of the slave
node ID for each MPC equation. Either local id (ACME_LOCAL_ID) or the least signifi-
cant word in the host code global node id (HOST_GLOBAL_ID) is returned.

mface_pid is an array (number_of_equations long) containing the most significant word of the
master face ID for each MPC equation. Either processor ID (ACME_LOCAL_ID) or the
most significant word in the host code global face ID (HOST_GLOBAL_ID) is returned.

mface_lid is an array (number_of_equations long) containing the least significant word of the slave
node ID for each MPC equation. Either local ID (ACME_LOCAL_ID) or the least signif-
icant word in the host code global face ID (HOST_GLOBAL_ID) is returned.

nface_nodes is an array (number_of_equations long) containing the number of nodes attached to
the master face for this MPC equation.

fnode_pid is an array (8*number_of_equations long) containing the most significant word of the
master face node ID for each MPC equation. Either processor ID (ACME_LOCAL_ID) or
the most significant word in the host code global node ID (HOST_GLOBAL_ID) is re-
turned. If the master face has fewer than 8 nodes, the remaining IDs are returned as zero.

fnode_lid is an array (8*number_of_equations long) containing the least significant word of the
master face node ID for each MPC equation. Either local id (ACME_LOCAL_ID) or the
least significant word in the host code global node id (HOST_GLOBAL_ID) is returned.
If the master face has fewer than 8 nodes, the remaining IDs are returned as zero.
109

MPC Enforcement
fnode_coefs is an array (8*number_of_equations long) containing the coefficients for the MPC
equation. The coefficients, , are written such that the MPC equation is given by

. If the master face has fewer than 8 nodes, the remaining coefficients
are returned as zero.

error is the return error code for the C and Fortran APIs.

8.5 Destroying a ContactVolumeTransfer Object

C++ ~ContactMPCs();

C FORTRAN(cleanup_mpc_eqns)();

Fortran cleanup_mpc_eqns()

CI

1 C1 C2 …+ + + 0=
110

Example
9. Example

This section outlines a simple single-processor search example with multiple face types
and an Analytic_Surface using the C++ interface. The only differences in using the C or
Fortran interface would be calling the analogous C/Fortran functions (the data and calling
sequence would be the same).

9.1 Problem Description

Consider the problem shown in Figure 14, where two bodies impact each other as well as
an analytic plane. One body is discretized with 8-node hexahedral elements and the other
is discretized with 4-node tetrahedral elements (the discretizations are not shown in Figure
14, however). For this example, we consider a dynamic search for NodeFace_Interactions.
As previously noted, all interactions with Analytic_Surfaces are static checks, regardless
of the type of search, for this version of ACME. The host code is responsible for creating a
topological representation of the surface to supply to ACME. The Face_Block numbering
is shown in Figure 15, the surface topology is shown in Figure 16, and the connectivities
for the faces are given in Table 14.

Figure 14 Example impact problem (two rectangular bodies and an Analytic_Surface)

Figure 15 Face_Block Numbering for Example Problem

Current Configuration Predicted Configuration

FB1

FB2
FB4

FB3

AS_ID = 5
111

Example
Figure 16 Surface Topology for Example Problem

Because all of the nodes are attached to faces, only one Node_Block is used (this block
will then have an ID of 1). For the Exodus IDs, we will simply use the local ID. For the
global IDs (which are two integers), we will use (0,local_id). For this example, consider
the case where the user wants to specify one set of search tolerance values between the
two bodies and another set between each body and the analytic plane, as well as specifying
the interaction type between each. To accommodate this, the number of Face_Blocks will
be four (one for the “side” face of the left body, one for the “bottom” face of the left body,
one for the “side” face of the right body and one for the “bottom” face of the right body).
The total number of Entity_Keys will then be 5 (one each for the Face_Blocks and an ad-
ditional one for the PLANE Analytic_Surface).

Table 14 Face_Blocks for Example Problem

Host Code
Face ID

Face_Block
ID

Index in
Block Connectivity

5 1 1 1-5-2

7 1 2 2-5-3

8 1 3 3-5-4

10 1 4 5-1-4

ACME Numbering
(Face_Block ID, Index in Block)

Host Code Numbering
8

13
11

4

1 17

41

21

17

33

27

38
19

16

5 7

810

13
15

14
17

23

24

1

2

3

4

5

6
7

8

9

13

10

11

12
14

(1,1)
(1,2)

(1,3)(1,4)

(2,1)

(2,2)
(2,3)

(2,4)

(3,1)

(4,1)
112

Example
9.2 Constructing a ContactSearch Object

The code fragment below represents the call (and error checking) to construct the Contact-
Search object:

ContactSearch::ContactErrorCode error;
ContactSearch search_obj(

dimensionality, number_of_states, number_of_entity_keys,
number_of_node_blocks, node_block_types,
number_of_nodes_in_blocks, node_exodus_ids, node_global_ids,
number_of_face_blocks, face_block_types,
number_of_faces_in_block, face_global_ids, face_connectivity,
number_of_elem_blocks, elem_block_types,
number_of_elems_in_blocks, elem_global_ids, elem_connectivity,
number_of_nodal_comm_partners, nodal_comm_proc_ids,
number_of_nodes_to_partner, communication_nodes,
mpi_communicator, error);

if(error){ // an error occurred on some processor
int num_err = search_obj.Number_of_Errors();
for(int i=0 ; i<num_err ; i++)
 cout << search_obj.Error_Message(i) << endl;
exit(error);

}

The data below represent the values of the arguments in the constructor:

dimensionality = 3
number_of_states = 1
number_of_entity_keys = 5
number_of_node_blocks = 1
node_block_types = { NODE }
number_of_nodes_in_blocks = { 14 }
node_exodus_ids = { 11, 8, 13, 1, 4, 17, 21, 41, 17, 33, 19, 27, 38,

16) }
node_global_ids = { (0,11),(0,8),(0,13),(0,1),(0,4),(0,17),(0,21),

(0,41),(0,17),(0,33),(0,19),(0,27),(0,38),

13 2 1 4-6-3

14 2 2 4-8-6

17 2 3 8-7-6

15 2 4 6-7-3

23 3 1 9-11-14-13

24 4 1 9-10-12-11

Table 14 Face_Blocks for Example Problem

Host Code
Face ID

Face_Block
ID

Index in
Block Connectivity
113

Example
(0,16) }
number_of_face_blocks = 4
face_block_types = { TRIFACEL3, TRIFACEL3, QUADFACEL4, QUADFACEL4 }
number_of_faces_in_block = { 4, 4, 1, 1 }
face_global_ids = { (0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7),

(0,8), (0,9), (0,10) }
face_connectivity = { [1, 5, 2, 2, 5, 3, 3, 5, 4, 5, 1, 4],

[4, 6, 3, 4, 8 ,6, 8, 7, 6, 6, 7, 3],
[9, 11, 14, 13] , [9, 11, 12, 10] }

number_of_elem_blocks = 0
element_block_types = NULL
number_of_elems_in_block = NULL
element_global_ids = NULL
element_connectivity = NULL
number_of_nodal_comm_partners = 0
nodal_comm_proc_ids = NULL
number_of_nodes_to_partner = NULL
communication_nodes = NULL
mpi_communicator = 0

9.3 Adding an Analytic_Surface

The next step is to add the analytic plane. Since we have already added four Face_Blocks,
the ID of the PLANE Analytic_Surface will be 5. The code fragment (and error checking)
to add this Analytic_Surface is:

error = search_obj.Add_Analytic_Surface(
analytic_surfacetype,
data);

if(error){
int num_err = search_obj.Number_of_Errors();
for(int i=0 ; i<num_err ; i++)
 cout << search_obj.Error_Message(i) << endl;
exit(error);

}

The data needed to add the Analytic_Surface are (see Table 11 for a description of the da-
ta):

analyticsurface_type = PLANE
data = { [0.0, 0.0, 0.0], [0.0, 1.0, 0.0] }

9.4 Search Data

The next step is to set the Search_Data. For this example, assume the user only wants in-
teractions for nodes of Face_Block 2 against faces of Face_Block 3, nodes of Face_Block
3 against faces of Face_Block 2 and nodes of Face_Blocks 1 and 4 against the PLANE
Analytic_Surface. We will use a Search_Normal_Tolerance of 0.01 for interactions be-
tween the two bodies and a Search_Normal_Tolerance of 0.1 for the bodies against the
PLANE Analytic_Surface. We will use Search_Tangential_Tolerance values of half the
respective Search_Normal_Tolerance values. Currently, a node only has one entity key
114

Example
(this is a limitation of the current implementation and will be addressed in a future re-
lease). The entity_key assigned to the node is from the first face it is connected to. As a re-
sult of this limitation, we must also allow interactions to be defined between nodes from
face block 1 to interact with faces from face block 3 and nodes from face block 4 to inter-
act with faces from face block 2. The call to add these data is:

search_obj.Set_Search_Data(Search_Data);

The search data array, with 2 x 5 x 5 values, is:

Search_Data = {
0, 0.01, 0.005 // FB1 nodes against FB1 faces
0, 0.01, 0.005 // FB2 nodes against FB1 faces
0, 0.01, 0.005 // FB3 nodes against FB1 faces
0, 0.01, 0.005 // FB4 nodes against FB1 faces
0, 0.01, 0.005 // Analytic Plane against FB1 faces (don’t exist)
0, 0.01, 0.005 // FB1 nodes against FB2 faces
0, 0.01, 0.005 // FB2 nodes against FB2 faces
1, 0.01, 0.005 // FB3 nodes against FB2 faces
1, 0.01, 0.005 // FB4 nodes against FB2 faces
0, 0.01, 0.005 // Analytic Plane against FB2 faces (don’t exist)
1, 0.01, 0.005 // FB1 nodes against FB3 faces
1, 0.01, 0.005 // FB2 nodes against FB3 faces
0, 0.01, 0.005 // FB3 nodes against FB3 faces
0, 0.01, 0.005 // FB4 nodes against FB3 faces
0, 0.01, 0.005 // Analytic Plane against FB4 faces (don’t exist)
0, 0.01, 0.005 // FB1 nodes against FB4 faces
1, 0.01, 0.005 // FB2 nodes against FB4 faces
0, 0.01, 0.005 // FB3 nodes against FB4 faces
0, 0.01, 0.005 // FB4 nodes against FB4 faces
0, 0.01, 0.005 // Analytic Plane against FB4 faces (don’t exist)
1, 0.1, 0.05 // FB1 nodes against Analytic Plane
0, 0.1, 0.05 // FB2 nodes against Analytic Plane
0, 0.1, 0.05 // FB3 nodes against Analytic Plane
1, 0.1, 0.05 // FB4 nodes against Analytic Plane
0, 0.1, 0.05 } // Analytic Plane against Analytic Plane

9.5 Setting the Search Options

For this example, multiple interaction definition is necessary but normal smoothing is not
needed. A value of 30 degrees will be used for the SHARP_NON_SHARP_ANGLE. The
code fragment to activate multiple interactions is

// Activate multiple interaction
error = Set_Search_Option(

ContactSearch::MULTIPLE_INTERACTIONS,
ContactSearch::ACTIVE,
multiple_interaction_data);
if(error){
115

Example
int num_err = search_obj.Number_of_Errors();
for(int i=0 ; i<num_err ; i++)

 cout << search_obj.Error_Message(i) << endl;
exit(error);

}

where multiple_interaction_data is a pointer to the SHARP_NON_SHARP_ANGLE
which has been set to 30 degrees. The code fragment to deactivate normal smoothing is

// Deactivate normal smoothing
error = Set_Search_Option(

ContactSearch::NORMAL_SMOOTHING,
ContactSearch::INACTIVE,
dummy);
if(error){

int num_err = search_obj.Number_of_Errors();
for(int i=0 ; i<num_err ; i++)

 cout << search_obj.Error_Message(i) << endl;
exit(error);

}
Since normal smoothing is being deactivated, dummy is a pointer to double but will never
be dereferenced so its value is irrelevant.

9.6 Specifying Configurations

At this point the topology is completely specified. The search object can be used to com-
pute the interactions once the configurations are specified. Since we are going to perform
a dynamic search, we need to specify the current and predicted configurations for the
Node_Blocks (in this case only one block). The code fragment to set the configurations is:

// Supply the current position
for(int iblk=1 ; iblk<=number_of_node_blocks ; iblk++){

error = search_obj.Set_Node_Block_Configuration(
ContactSearch::CURRENT_CONFIG,
iblk,
current_positions[iblk-1]);

if(error){
int num_err = search_obj.Number_of_Errors();
for(int i=0 ; i<num_err ; i++)

 cout << search_obj.Error_Message(i) << endl;
exit(error);

}
// Supply the predicted position
error = search_obj.Set_Node_Block_Configuration(

ContactSearch::PREDICTED_CONFIG,
iblk,
predicted_positions[iblk-1]);

if(error){
int num_err = search_obj.Number_of_Errors();
for(int i=0 ; i<num_err ; i++)

cout << search_obj.Error_Message(i) << endl;
exit(error);
116

Example
}
}

The current and predicted positions for the nodes are shown in Table 15.

9.7 Performing the Search

The search can now be performed with the following code fragment:

error = search_obj.Dynamic_Search_2_Configuration();
if(error){

cout << “Error in Dynamic_Search:: Error Code = “
<< error << endl;

int num_err = search_obj.Number_of_Errors();
for(i=0 ; i<num_err ; i++)

cout << search_obj.Error_Message(i) << endl;
exit(error);

}

Table 15 Current and Predicted Positions for Example Problem

Node Current Position Predicted Position

1 {-1.1 0.1 0.0} {-0.9 -0.1 0.0}

2 { -1.1 0.1 1.0} {-0.9 -0.1 1.0 }

3 { -0.1 0.1 1.0} { 0.1 -0.1 1.0}

4 { -0.1 0.1 0.0} { 0.1 -0.1 0.0}

5 { -0.6 0.1 0.5} { -0.4 -0.1 0.5}

6 { -0.1 0.6 0.6} { 0.1 0.4 0.6}

7 { -0.1 1.1 1.0} { 0.1 0.9 1.0}

8 { -0.1 1.1 0.0} { 0.1 0.9 0.0}

9 {0.1 0.1 0.0} { -0.1 -0.1 0.0}

10 {1.1 0.1 0.0} {0.9 -0.1 0.0 }

11 {0.1 0.1 1.0} { -0.1 -0.1 1.0}

12 {1.1 0.1 1.0} {0.9 -0.1 1.0 }

13 {0.1 1.1 0.0} {-0.1 0.9 0.0 }

14 {0.1 1.1 1.0} { -0.1 0.9 1.0}
117

Example
9.8 Extracting Interactions

The following coding will extract both the NodeFace_Interactions and the
NodeSurface_Interactions:

// Get the NodeFace_Interactions
int number_of_NFIs, NFI_data_size;
search_obj.Size_NodeFace_Interactions(

number_of_NFIs,
NFI_data_size);

if(number_of_NFIs){
int* NFI_node_block_ids = new int[number_of_NFIs];
int* NFI_node_indexes_in_block = new int[number_of_NFIs];
int* NFI_node_entity_keys = new int[number_of_NFIs];
int* NFI_face_block_ids = new int[number_of_NFIs];
int* NFI_face_indexes_in_block = new int[number_of_NFIs;]
int* NFI_face_procs = new int[number_of_NFIs];
double* NFI_data = new double[number_of_NFIs*NFI_data_size];
search.Get_NodeFace_Interactions(NFI_node_block_ids,

NFI_node_indexes_in_block, NFI_node_entity_keys,
NFI_face_block_ids, NFI_face_indexes_in_block,
NFI_face_procs,NFI_data);

}

// Get the NodeSurface_Interactions
int number_of_NSIs, NSI_data_size;
search_obj.Size_NodeSurface_Interactions(

number_of_NSIs,
NSI_data_size);

if(number_of_NSIs){
int* NSI_node_block_ids = new int[number_of_NSIs];
int* NSI_node_indexes_in_block = new int[number_of_NSIs];
int* NSI_analyticsurface_ids = new int[number_of_NSIs];
double* NSI_data = new double[number_of_NSIs*NSI_data_size];
search.Get_NodeSurface_Interactions(NSI_node_block_ids,

NSI_node_indexes, NSI_analyticsurface_ids, NSI_data);
}

Table 16 gives the data for the NodeFace_Interactions and Table 17 gives the data for the
NodeSurface_Interactions.

Table 16 NodeFace_Interactions for Example Problem

Node
Block

Index
in

Block

Node
Entity
Key

Face
Block

Index
in

Block

Local
Coords Gap

Unit
Pushback

Vector

Unit
Surface
Normal

Alg
.

1 3 2 3 1 1, -1 -0.2 -1, 0, 0 -1, 0, 0 3

1 4 2 3 1 -1, -1 -0.2 -1, 0, 0 -1, 0, 0 3

1 6 2 3 1 0, 0 -0.2 -1, 0, 0 -1, 0, 0 3
118

Example
This completes the example for one time step. It is assumed the host code would take these
interactions, enforce the constraints implied by these interactions and then integrate the
governing equations to the next time step. At that point, the host code can supply the cur-
rent and predicted configurations for the new time step and call the search again to define
new interactions. This process can then be repeated until the analysis is complete.

9.9 ExodusII Output

An ExodusII output file can be created which contains the topology and interactions with
the following code fragment

1 7 2 3 1 1, 1 -0.2 -1, 0, 0 -1, 0, 0 3

1 8 2 3 1 -1, 1 -0.2 -1, 0, 0 -1, 0, 0 3

1 9 3 2 1 0, 0 -0.2 1, 0, 0 1, 0, 0 3

1 11 3 2 1 0, 0 -0.2 1, 0, 0 1, 0, 0 3

1 13 3 2 2 0, 1 -0.2 1, 0, 0 1, 0, 0 3

1 14 3 2 3 0, 1 -0.2 1, 0, 0 1, 0, 0 3

Table 17 NodeSurface_Interactions for Example Problem

Node
Block

Index in
Block Surface ID Gap Interaction

Point
Surface
Normal

1 1 5 -0.1 -0.9, 0, 0 0, 1, 0

1 2 5 -0.1 -0.9, 0, 1 0, 1, 0

1 5 5 -0.1 -0.4, 0, 0.5 0, 1, 0

1 11 5 -0.1 -0.1, 0, 1 0, 1, 0

1 9 5 -0.1 -0.1, 0, 0 0, 1, 0

1 4 5 -0.1 0.1, 0, 0 0, 1, 0

1 3 5 -0.1 0.1, 0, 1 0, 1, 0

1 10 5 -0.1 0.9, 0, 0 0, 1, 0

1 12 5 -0.1 0.9, 0, 1 0, 1, 0

Table 16 NodeFace_Interactions for Example Problem

Node
Block

Index
in

Block

Node
Entity
Key

Face
Block

Index
in

Block

Local
Coords Gap

Unit
Pushback

Vector

Unit
Surface
Normal

Alg
.

119

Example
int iows = 8;
int compws = 8;
char OutputFileName[] = "contact_topology.exo";
int exodus_id=ex_create(OutputFileName,EX_CLOBBER,&compws,&iows);
if(search->Exodus_Output(exodus_id, time)){

cout << "Error with exodus output" << endl;
for(i=0 ; i<search->Number_of_Errors() ; i++)

cout << search->Error_Message(i) << endl;
}
ex_close(exodus_id);

Figure 17 shows plots from the ExodusII output for this example. The analytic plane is not
shown in these plots because there is no way to include this plane in the ExodusII file.

Figure 17 ExodusII Output for Example Problem

a) The topology with a vector plot of displacement.
b) NodeFace_Interaction vector plot. Note the interaction vectors push back exactly to the
opposing face.
c) NodeSurface_Interaction vector plot. The “top” of the vectors represent the location of
the Analytic_Surface.

(a) (b) (c)
120

Appendix A: Glossary of ACME Terms

ACME - Algorithms for Contact in a Multiphysics Environment.

Analytic_Surface - A rigid surface that can be described analytically by a geometric defi-
nition (e.g., planes and spheres).

ContactErrorCode - An error code returned by all public access functions in ACME.

ContactFace_Type - The type of faces in a Face_Block, currently QUADFACEL4,
QUADFACEQ8, TRIFACEL3, or TRIFACEQ6.

ContactGapRemoval - The top level object constructed by a host application to determine
a displacement increment that will remove initial gaps using interactions found by the
ContactSearch object.

ContactNode_Type - The type of nodes in a Node_Block, currently only NODE.
(NODE_WITH_SLOPE and NODE_WITH_RADIUS not yet available in this release.)

ContactSearch - The top-level object constructed by a host application to search for topo-
logical interactions.

ContactTDEnforcement - The top level object constructed by a host application to deter-
mine forces from topological interactions found by the ContactSearch object for use in
transient dynamics equations.

Dynamic 2-Configuration Search - The search algorithm that uses a combination of a dy-
namic intersection and closest point projection to determine interactions.

Dynamic Augmented 2-Configuration Search - The search algorithm that uses contact
forces from the last time step (from a ContactTDEnforcement object) to construct an aug-
mented predicted configuration. The algorithm then determines interactions using this
configuration with a combination of a dynamic intersection and closest point projection.

Entity_Key - An identifier for a topological entity (currently node, face, or
Analytic_Surface) used to extract user-specified parameters from the Search_Data array.

Face_Block - A collection of faces of the same type that have the same Entity_Key.

FaceCoverage_Interaction - A set of data returned by ACME to the host code that contains
the interacting face and the data describing the interaction (the contour of the uncovered
portion of the face is described by the number of edges and edge nodes of that contour).

FaceFace_Interaction - A set of data returned by ACME to the host code that contains the
interacting face (slave face), a face with which it interacts (master face), and the data de-
scribing the interaction (the contour of the face/face overlap is described by the number of
edges, the edge nodes, the overlap centroid, and a set of edge flags).
121

Gap - The distance between a node and a face, in the direction normal to that face in most
cases, defined as positive if the node is not penetrating the face and zero or negative if the
node is on or inside (penetrating) the face.

NODE - A traditional node with position and no other attributes.

Node_Block - A collection of nodes of the same type. Currently, all node blocks must be
of type NODE. All nodes that are connected to faces must be in the first Node_Block.
Nodes that are not connected to faces (i.e., SPH particles, Gauss points, etc.) must be
placed in Node_Blocks 2 through N.

NodeFace_Interaction - A set of data returned by ACME to the host code that contains the
interacting node, the face with which it interacts, and data describing the interaction (con-
tact point in local coordinates, Normal_Gap, unit pushback vector, unit surface normal,
and algorithm used).

NodeSurface_Interaction - A set of data returned by ACME to the host code that contains
the interacting node, the Analytic_Surface with which it interacts, and additional data de-
scribing the interaction (contact point in global coordinates, Normal_Gap, and unit surface
normal).

QUADFACEL4 - A 4-node quadrilateral face with linear interpolation.

QUADFACEQ8 - An 8-node quadrilateral face with quadratic interpolation.

Search_Data - An array containing user-specified parameters (currently three:
Interaction_Status, Search_Normal_Tolerance and Search_Tangential_Tolerance) that
must be set by the host code to control the search algorithms for all possible pairs of inter-
acting topological entities.

Search_Normal_Tolerance - An absolute distance defined by the user to determine, in
conjunction with any physical motion, whether two topological entities interact. This tol-
erance acts normal to the face.

Search_Tangential_Tolerance -An absolute distance defined by the user to determine, in
conjunction with any physical motion, whether two topological entities interact. This tol-
erance acts tangential to the face.

Static 1-Configuration Search - The search algorithm that uses only one configuration to
determine interactions using a closest point projection.

Static 2-Configuration Search - The search algorithm that uses two configurations, current
and predicted, to determine interactions using a closest point projection.

TRIFACEL3 - A 3-node triangular face with linear interpolation.

TRIFACEQ6 - A 6-node triangular face with quadratic interpolation.
122

Distribution
Distribution (78):

David Crane (5)
Los Alamos National Laboratory
Division-ESA Group-EA
Tech Area 16 Building 242 Office 106
Mail Stop P946
Los Alamos, NM 87545

MS0423 9832 J. A. Fernandez
MS0427 2134 J. R. Weatherby
MS0521 2561 S. T. Montgomery
MS0819 9231 K. H. Brown (10)
MS0819 9231 S. Carroll
MS0819 9231 D. E. Carroll
MS0819 9231 R. R. Drake
MS0819 9231 T. E. Voth
MS0826 9143 H. C. Edwards
MS0826 9143 J. R. Stewart
MS0826 9114 P. R. Schunk
MS0827 9143 M. E. Hamilton
MS0835 9141 S. W. Bova
MS0835 9141 M. W. Glass
MS0835 9141 R. R. Lober
MS0835 9142 K. H. Pierson
MS0847 9134 S. W. Attaway
MS0847 9121 M. K. Bhardwaj
MS0847 9142 M. L. Blanford
MS0847 9126 S. N. Burchett
MS0847 9126 H. Duong
MS0847 9126 J. D. Gruda
MS0847 9142 A. S. Gullerud
MS0847 9126 K. W. Gwinn
MS0847 9142 M. W. Heinstein
MS0847 9142 S. W. Key
MS0847 9142 J. R. Koteras
MS0847 9126 J. S. Lash
MS0847 9126 K. E. Metzinger
MS0847 9142 J. A. Mitchell
MS0847 9142 G. M. Reese
MS0847 9143 G. D. Sjaardema
MS0847 9142 T. F. Walsh
MS1111 9226 K. D. Devine
MS1111 9215 R. Heaphy
MS1111 9224 C. T. Vaughn
MS9042 8727 M. Chiesa
MS9042 8727 J. A. Crowell
MS9042 8727 J. J. Dike
MS9042 8727 B. Kistler
123

Distribution
MS9042 8728 C. Moen
MS9161 8726 P. A. Klein
MS9405 9405 R. E. Jones (3)

Copy to:
MS0321 9200 W. J. Camp
MS0321 9230 P. Yarrington
MS0819 9231 Day File
MS0819 9231 R. M. Summers
MS0826 9143 J. D. Zepper
MS0827 9140 J. M. McGlaun
MS0834 9110 A. C. Ratzel
MS0835 9141 E. A. Boucheron
MS0841 9100 T. C. Bickel
MS0847 9127 J. Jung
MS0847 9126 R. A. May
MS0847 9120 H. S. Morgan
MS0847 9142 K. F. Alvin
MS9161 8726 E-P Chen
MS1110 9214 D. E. Womble

MS0612 9612 Review & Approval Desk
MS0899 9616 Technical Library (2)
MS9018 8945-1 Central Technical Files
124

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Topology
	1.1.1 Node_Blocks
	1.1.2 Face_Blocks
	1.1.3 Element_Blocks
	1.1.4 Analytic_Surfaces
	1.1.5 Search_Data

	1.2 Search Algorithms
	1.2.1 Static 1-Configuration Search Algorithm
	1.2.2 Static 2-Configuration Search Algorithm
	1.2.3 Dynamic 2-Configuration Search Algorithm
	1.2.4 Dynamic Augmented 2-Configuration Search Algorithm

	1.3 Interactions
	1.3.1 NodeFace_Interactions
	1.3.2 NodeSurface_Interactions
	1.3.3 FaceFace_Interactions
	1.3.4 FaceCoverage_Interactions
	1.3.5 ElementElement_Interactions

	1.4 Search Options
	1.4.1 Multiple Interactions at a Node
	1.4.2 Normal Smoothing

	1.5 Gap Removal Enforcement
	1.6 Explicit Transient Dynamic Enforcement
	1.7 Tied Kinematics Enforcement
	1.8 Volume Transfer Enforcement
	1.9 Multiple Point Constraint (MPC) Enforcement
	1.10 Errors
	1.11 Plotting
	1.11.1 Search Data Plot Variables
	1.11.2 Enforcement Data Plot Variables

	1.12 Restart Capabilities

	2. Utility Functions
	2.1 Version Information
	2.1.1 Getting the Version ID
	2.1.2 Getting the Version Date
	2.1.3 Checking Compatibility with MPI

	2.2 Errors
	2.2.1 Getting the Number of Errors
	2.2.2 Extracting Error Messages

	2.3 Binary Stream Restart Functions
	2.3.1 Getting the Binary Restart Size
	2.3.2 Extracting the Binary Restart Data
	2.3.3 Constructing Objects Upon Restart

	2.4 Variable-Based Restart Functions
	2.4.1 Obtaining the Number of General Restart Variables
	2.4.2 Obtaining the Number of Nodal Restart Variables
	2.4.3 Obtaining the Number of Edge Restart Variables
	2.4.4 Obtaining the Number of Face Restart Variables
	2.4.5 Obtaining the Number of Element Restart Variables
	2.4.6 Extracting the General Restart Variables
	2.4.7 Implanting the General Restart Variables
	2.4.8 Extracting the Nodal Restart Variables
	2.4.9 Implanting the Nodal Restart Variables
	2.4.10 Extracting the Edge Restart Variables
	2.4.11 Implanting the Edge Restart Variables
	2.4.12 Extracting the Face Restart Variables
	2.4.13 Implanting the Face Restart Variables
	2.4.14 Extracting the Element Restart Variables
	2.4.15 Implanting the Element Restart Variables
	2.4.16 Completing a Variable-Based Restart

	2.5 Creating an Exodus Plot File of the Search & Enforcement Data

	3. Search Functions
	3.1 Creating a ContactSearch Object
	3.2 Updating a Search Object
	3.3 Search_Data Array
	3.3.1 Checking the Search_Data Array Size
	3.3.2 Setting Values in the Search_Data Array

	3.4 Analytic_Surfaces
	3.4.1 Adding an Analytic_Surface
	3.4.2 Setting the Analytic_Surface Configuration

	3.5 Node_Block Data
	3.5.1 Setting the Node_Block Configuration
	3.5.2 Setting the Node_Block Kinematic Constraints
	3.5.3 Setting the Node_Block Attributes

	3.6 Face_Block Data
	3.6.1 Setting the Face_Block Attributes

	3.7 Table Data
	3.8 Search Algorithms
	3.8.1 Setting the Search Option
	3.8.2 Performing a Static 1-Configuration Search
	3.8.3 Performing a Static 2-Configuration Search
	3.8.4 Performing a Dynamic 2-Configuration Search
	3.8.5 Performing a Dynamic Augmented 2-Configuration Search

	3.9 Interactions
	3.9.1 Getting the Size of NodeFace_Interactions
	3.9.2 Extracting NodeFace_Interactions
	3.9.3 Getting the Size of NodeSurface_Interactions
	3.9.4 Extracting NodeSurface_Interactions
	3.9.5 Getting the Size of FaceFace_Interactions
	3.9.6 Extracting FaceFace_Interactions
	3.9.7 Getting the Size of FaceCoverage_Interactions
	3.9.8 Extracting FaceCoverage_Interactions
	3.9.9 Getting the Size of ElementElement_Interactions
	3.9.10 Extracting ElementElement_Interactions
	3.9.11 Deleting Interactions

	4. Gap Removal Enforcement Functions
	4.1 Constructing a ContactGapRemoval Object
	4.2 Computing the Gap Removal Displacements
	4.3 Destroying a ContactGapRemoval Object

	5. Explicit Transient Dynamic Enforcement Functions
	5.1 Creating a ContactTDEnforcement Object
	5.2 Defining Enforcement Models
	5.3 Controlling the Algorithm
	5.4 Specifying Symmetric Nodes
	5.5 Computing the Contact Forces
	5.6 Extracting Plot Variables
	5.7 Destroying a ContactTDEnforcement Object

	6. Tied Kinematics Enforcement Functions
	6.1 Constructing a ContactTiedKinematics Object
	6.2 Computing the ContactTiedKinematic Displacements
	6.3 Destroying a ContactTiedKinematics Object

	7. Volume Transfer
	7.1 Constructing a Volume TransferObject
	7.2 Computing the Transfered Element and Nodal Data
	7.3 Destroying a ContactVolumeTransfer Object

	8. MPC Enforcement
	8.1 Constructing a ContactMPCs Object
	8.2 Computing the Multiple Point Constraint (MPC) Equations
	8.3 Getting the Number of MPC Equations
	8.4 Getting the MPC Equations
	8.5 Destroying a ContactVolumeTransfer Object

	9. Example
	9.1 Problem Description
	9.2 Constructing a ContactSearch Object
	9.3 Adding an Analytic_Surface
	9.4 Search Data
	9.5 Setting the Search Options
	9.6 Specifying Configurations
	9.7 Performing the Search
	9.8 Extracting Interactions
	9.9 ExodusII Output
	Appendix A: Glossary of ACME Terms
	Distribution

